skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mn(III)-Ligand Complexes as a Catalyst in Ligand-Assisted Oxidation of Substituted Phenols by Permanganate in Aqueous Solution
Award ID(s):
1808406
PAR ID:
10186334
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of hazardous materials
Volume:
384
ISSN:
0304-3894
Page Range / eLocation ID:
121401
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Signaling bias is the ability of a receptor to differentially activate downstream signaling pathways in response to different ligands. Bias investigations have been hindered by inconsistent results in different cellular contexts. Here we introduce a methodology to identify and quantify bias in signal transduction across the plasma membrane without contributions from feedback loops and system bias. We apply the methodology to quantify phosphorylation efficiencies and determine absolute bias coefficients. We show that the signaling of epidermal growth factor receptor (EGFR) to EGF and TGFα is biased towards Y1068 and against Y1173 phosphorylation, but has no bias for epiregulin. We further show that the L834R mutation found in non-small-cell lung cancer induces signaling bias as it switches the preferences to Y1173 phosphorylation. The knowledge gained here challenges the current understanding of EGFR signaling in health and disease and opens avenues for the exploration of biased inhibitors as anti-cancer therapies. 
    more » « less
  2. Perovskite materials passivated by chiral ligands have recently shown unique chiroptical activity with promising optoelectronic applications. However, the ligands have been limited to chiral amines. Here, chiral phosphate molecules have been exploited to synthesize CsPbBr 3 nanoplatelets. The nanoplatelets showed a distinct circular dichroism signal and maintained their chiroptical properties after purification with anti-solvent. 
    more » « less