skip to main content


Title: An untethered isoperimetric soft robot
For robots to be useful for real-world applications, they must be safe around humans, be adaptable to their environment, and operate in an untethered manner. Soft robots could potentially meet these requirements; however, existing soft robotic architectures are limited by their ability to scale to human sizes and operate at these scales without a tether to transmit power or pressurized air from an external source. Here, we report an untethered, inflated robotic truss, composed of thin-walled inflatable tubes, capable of shape change by continuously relocating its joints, while its total edge length remains constant. Specifically, a set of identical roller modules each pinch the tube to create an effective joint that separates two edges, and modules can be connected to form complex structures. Driving a roller module along a tube changes the overall shape, lengthening one edge and shortening another, while the total edge length and hence fluid volume remain constant. This isoperimetric behavior allows the robot to operate without compressing air or requiring a tether. Our concept brings together advantages from three distinct types of robots—soft, collective, and truss-based—while overcoming certain limitations of each. Our robots are robust and safe, like soft robots, but not limited by a tether; are modular, like collective robots, but not limited by complex subunits; and are shape-changing, like truss robots, but not limited by rigid linear actuators. We demonstrate two-dimensional (2D) robots capable of shape change and a human-scale 3D robot capable of punctuated rolling locomotion and manipulation, all constructed with the same modular rollers and operating without a tether.  more » « less
Award ID(s):
1925373 1925030 1637446
NSF-PAR ID:
10186618
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Science Robotics
Volume:
5
Issue:
40
ISSN:
2470-9476
Page Range / eLocation ID:
eaaz0492
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In soft devices, complex actuation sequences and precise force control typically require hard electronic valves and microcontrollers. Existing designs for entirely soft pneumatic control systems are capable of either digital or analog operation, but not both, and are limited by speed of actuation, range of pressure, time required for fabrication, or loss of power through pull-down resistors. Using the nonlinear mechanics intrinsic to structures composed of soft materials—in this case, by leveraging membrane inversion and tube kinking—two modular soft components are developed: a piston actuator and a bistable pneumatic switch. These two components combine to create valves capable of analog pressure regulation, simplified digital logic, controlled oscillation, nonvolatile memory storage, linear actuation, and interfacing with human users in both digital and analog formats. Three demonstrations showcase the capabilities of systems constructed from these valves: 1) a wearable glove capable of analog control of a soft artificial robotic hand based on input from a human user’s fingers, 2) a human-controlled cushion matrix designed for use in medical care, and 3) an untethered robot which travels a distance dynamically programmed at the time of operation to retrieve an object. This work illustrates pathways for complementary digital and analog control of soft robots using a unified valve design. 
    more » « less
  2. null (Ed.)
    Today’s use of large-scale industrial robots is enabling extraordinary achievement on the assembly line, but these robots remain isolated from the humans on the factory floor because they are very powerful, and thus dangerous to be around. In contrast, the soft robotics research community has proposed soft robots that are safe for human environments. The current state of the art enables the creation of small-scale soft robotic devices. In this article we address the gap between small-scale soft robots and the need for human-sized safe robots by introducing a new soft robotic module and multiple human-scale robot configurations based on this module. We tackle large-scale soft robots by presenting a modular and reconfigurable soft robotic platform that can be used to build fully functional and untethered meter-scale soft robots. These findings indicate that a new wave of human-scale soft robots can be an alternative to classic rigid-bodied robots in tasks and environments where humans and machines can work side by side with capabilities that include, but are not limited to, autonomous legged locomotion and grasping. 
    more » « less
  3. A fundamental challenge in the field of modular and collective robots is balancing the trade-off between unit- level simplicity, which allows scalability, and unit-level function- ality, which allows meaningful behaviors of the collective. At the same time, a challenge in the field of soft robotics is creating untethered systems, especially at a large scale with many controlled degrees of freedom (DOF). As a contribution toward addressing these challenges, here we present an untethered, soft cellular robot unit. A single unit is simple and one DOF, yet can increase its volume by 8x and apply substantial forces to the environment, can modulate its surface friction, and can switch its unit-to-unit cohesion while agnostic to unit-to- unit orientation. As a soft robot, it is robust and can achieve untethered operation of its DOF. We present the design of the unit, a volumetric actuator with a perforated strain-limiting fabric skin embedded with magnets surrounding an elastomeric membrane, which in turn encompasses a low-cost micro-pump, battery, and control electronics. We model and test this unit and show simple demonstrations of three-unit configurations that lift, crawl, and perform plate manipulation. Our untethered, soft cellular robot unit lays the foundation for new robust soft robotic collectives that have the potential to apply human-scale forces to the world. 
    more » « less
  4. Abstract Soft robots can undergo large elastic deformations and adapt to complex shapes. However, they lack the structural strength to withstand external loads due to the intrinsic compliance of fabrication materials (silicone or rubber). In this paper, we present a novel stiffness modulation approach that controls the robot’s stiffness on-demand without permanently affecting the intrinsic compliance of the elastomeric body. Inspired by concentric tube robots, this approach uses a Nitinol tube as the backbone, which can be slid in and out of the soft robot body to achieve robot pose or stiffness modulation. To validate the proposed idea, we fabricated a tendon-driven concentric tube (TDCT) soft robot and developed the model based on Cosserat rod theory. The model is validated in different scenarios by varying the joint-space tendon input and task-space external contact force. Experimental results indicate that the model is capable of estimating the shape of the TDCT soft robot with an average root-mean-square error (RMSE) of 0.90 (0.56% of total length) mm and average tip error of 1.49 (0.93% of total length) mm. Simulation studies demonstrate that the Nitinol backbone insertion can enhance the kinematic workspace and reduce the compliance of the TDCT soft robot by 57.7%. Two case studies (object manipulation and soft laparoscopic photodynamic therapy) are presented to demonstrate the potential application of the proposed design. 
    more » « less
  5. Abstract

    For soft robots to have ubiquitous adoption in practical applications they require soft actuators that provide well‐rounded actuation performance that parallels natural muscle while being inexpensive and easily fabricated. This manuscript introduces a toolkit to rapidly prototype, manufacture, test, and power various designs of hydraulically amplified self‐healing electrostatic (HASEL) actuators with muscle‐like performance that achieve all three basic modes of actuation (expansion, contraction, and rotation). This toolkit utilizes easy‐to‐implement methods, inexpensive fabrication tools, commodity materials, and off‐the‐shelf high‐voltage electronics thereby enabling a wide audience to explore HASEL technology. Remarkably, the actuators created from this easy‐to‐implement toolkit achieve linear strains exceeding 100%, a specific power greater than 150 W kg−1, and ≈20% strain at frequencies above 100 Hz. This combination of large strain, extreme speed, and high specific power yields soft actuators that jump without power‐amplifying mechanisms. Additionally, an efficient fabrication technique is introduced for modular designs of HASEL actuators, which is used to develop soft robotic devices driven by portable electronics. Inspired by the versatility of elephant trunks, the above capabilities are combined to create an untethered continuum robot for grasping and manipulating delicate objects, highlighting the wide potential of the introduced methods for soft robots with increasing sophistication.

     
    more » « less