- PAR ID:
- 10186618
- Date Published:
- Journal Name:
- Science Robotics
- Volume:
- 5
- Issue:
- 40
- ISSN:
- 2470-9476
- Page Range / eLocation ID:
- eaaz0492
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Today’s use of large-scale industrial robots is enabling extraordinary achievement on the assembly line, but these robots remain isolated from the humans on the factory floor because they are very powerful, and thus dangerous to be around. In contrast, the soft robotics research community has proposed soft robots that are safe for human environments. The current state of the art enables the creation of small-scale soft robotic devices. In this article we address the gap between small-scale soft robots and the need for human-sized safe robots by introducing a new soft robotic module and multiple human-scale robot configurations based on this module. We tackle large-scale soft robots by presenting a modular and reconfigurable soft robotic platform that can be used to build fully functional and untethered meter-scale soft robots. These findings indicate that a new wave of human-scale soft robots can be an alternative to classic rigid-bodied robots in tasks and environments where humans and machines can work side by side with capabilities that include, but are not limited to, autonomous legged locomotion and grasping.more » « less
-
Abstract Biological organisms exhibit phenomenal adaptation through morphology‐shifting mechanisms including self‐amputation, regeneration, and collective behavior. For example, reptiles, crustaceans, and insects amputate their own appendages in response to threats. Temporary fusion between individuals enables collective behaviors, such as in ants that temporarily fuse to build bridges. The concept of morphological editing often involves the addition and subtraction of mass and can be linked to modular robotics, wherein synthetic body morphology may be revised by rearranging parts. This work describes a reversible cohesive interface made of thermoplastic elastomer that allows for strong attachment and easy detachment of distributed soft robot modules without direct human handling. The reversible joint boasts a modulus similar to materials commonly used in soft robotics, and can thus be distributed throughout soft robot bodies without introducing mechanical incongruities. To demonstrate utility, the reversible joint is implemented in two embodiments: a soft quadruped robot that self‐amputates a limb when stuck, and a cluster of three soft‐crawling robots that fuse to cross a land gap. This work points toward future robots capable of radical shape‐shifting via changes in mass through autotomy and interfusion, as well as highlights the crucial role that interfacial stiffness change plays in autotomizable biological and artificial systems.
-
In soft devices, complex actuation sequences and precise force control typically require hard electronic valves and microcontrollers. Existing designs for entirely soft pneumatic control systems are capable of either digital or analog operation, but not both, and are limited by speed of actuation, range of pressure, time required for fabrication, or loss of power through pull-down resistors. Using the nonlinear mechanics intrinsic to structures composed of soft materials—in this case, by leveraging membrane inversion and tube kinking—two modular soft components are developed: a piston actuator and a bistable pneumatic switch. These two components combine to create valves capable of analog pressure regulation, simplified digital logic, controlled oscillation, nonvolatile memory storage, linear actuation, and interfacing with human users in both digital and analog formats. Three demonstrations showcase the capabilities of systems constructed from these valves: 1) a wearable glove capable of analog control of a soft artificial robotic hand based on input from a human user’s fingers, 2) a human-controlled cushion matrix designed for use in medical care, and 3) an untethered robot which travels a distance dynamically programmed at the time of operation to retrieve an object. This work illustrates pathways for complementary digital and analog control of soft robots using a unified valve design.more » « less
-
A fundamental challenge in the field of modular and collective robots is balancing the trade-off between unit- level simplicity, which allows scalability, and unit-level function- ality, which allows meaningful behaviors of the collective. At the same time, a challenge in the field of soft robotics is creating untethered systems, especially at a large scale with many controlled degrees of freedom (DOF). As a contribution toward addressing these challenges, here we present an untethered, soft cellular robot unit. A single unit is simple and one DOF, yet can increase its volume by 8x and apply substantial forces to the environment, can modulate its surface friction, and can switch its unit-to-unit cohesion while agnostic to unit-to- unit orientation. As a soft robot, it is robust and can achieve untethered operation of its DOF. We present the design of the unit, a volumetric actuator with a perforated strain-limiting fabric skin embedded with magnets surrounding an elastomeric membrane, which in turn encompasses a low-cost micro-pump, battery, and control electronics. We model and test this unit and show simple demonstrations of three-unit configurations that lift, crawl, and perform plate manipulation. Our untethered, soft cellular robot unit lays the foundation for new robust soft robotic collectives that have the potential to apply human-scale forces to the world.more » « less
-
Despite tremendous progress in the development of untethered soft robots in recent years, existing systems lack the mobility, model‐based control, and motion planning capabilities of their piecewise rigid counterparts. As in conventional robotic systems, the development of versatile locomotion of soft robots is aided by the integration of hardware design and control with modeling tools that account for their unique mechanics and environmental interactions. Here, a framework for physics‐based modeling, motion planning, and control of a fully untethered swimming soft robot is introduced. This framework enables offline co‐design in the simulation of robot parameters and gaits to produce effective open‐loop behaviors and enables closed‐loop planning over motion primitives for feedback control of a frog‐inspired soft robot testbed. This pipeline uses a discrete elastic rods (DERs) physics engine that discretizes the soft robot as many stretchable and bendable rods. On hardware, an untethered aquatic soft robot that performs frog‐like rowing behaviors is engineered. Hardware validation verifies that the simulation has sufficient accuracy to find the best candidates for sets of parameters offline. The simulator is then used to generate a trajectory library of the robot's motion in simulation that is used in real‐time closed‐loop path following experiments on hardware.