We give a combinatorial proof of a recent geometric result of Farkas and Lian on linear series on curves with prescribed incidence conditions. The result states that the expected number of degree-d morphisms from a general genus-g, n-marked curve C to Pr, sending the marked points on C to specified general points in Pr, is equal to (r + 1)g for sufficiently large d. This computation may be rephrased as an intersection problem on Grassmannians, which has a combinatorial interpretation in terms of Young tableaux by the Littlewood-Richardson rule. We give a bijection, generalizing the RSK correspondence, between the tableaux in question and the (r+1)ary sequences of length g, and we explore our bijection’s combinatorial properties. We also apply similar methods to give a combinatorial interpretation and proof of the fact that, in the modified setting in which r = 1 and several marked points map to the same point in P1, the number of morphisms is still 2g for sufficiently large d.
more »
« less
Combinatorics of Generalized Exponents
Abstract We give a purely combinatorial proof of the positivity of the stabilized forms of the generalized exponents associated to each classical root system. In finite type $$A_{n-1}$$, we rederive the description of the generalized exponents in terms of crystal graphs without using the combinatorics of semistandard tableaux or the charge statistic. In finite type $$C_{n}$$, we obtain a combinatorial description of the generalized exponents based on the so-called distinguished vertices in crystals of type $$A_{2n-1}$$, which we also connect to symplectic King tableaux. This gives a combinatorial proof of the positivity of Lusztig $$t$$-analogs associated to zero-weight spaces in the irreducible representations of symplectic Lie algebras. We also present three applications of our combinatorial formula and discuss some implications to relating two type $$C$$ branching rules. Our methods are expected to extend to the orthogonal types.
more »
« less
- PAR ID:
- 10186619
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- Volume:
- 2020
- Issue:
- 16
- ISSN:
- 1073-7928
- Page Range / eLocation ID:
- 4942 to 4992
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a combinatorial formula using skew Young tableaux for the coefficients of Kazhdan-Lusztig polynomials for sparse paving matroids. These matroids are known to be logarithmically almost all matroids, but are conjectured to be almost all matroids. We also show the positivity of these coefficients using our formula. In special cases, such as uniform matroids, our formula has a nice combinatorial interpretation.more » « less
-
We study the realization of acyclic cluster algebras as coordinate rings of Coxeter double Bruhat cells in Kac–Moody groups. We prove that all cluster monomials with $$\mathbf{g}$$ -vector lying in the doubled Cambrian fan are restrictions of principal generalized minors. As a corollary, cluster algebras of finite and affine type admit a complete and non-recursive description via (ind-)algebraic group representations, in a way similar in spirit to the Caldero–Chapoton description via quiver representations. In type $$A_{1}^{(1)}$$ , we further show that elements of several canonical bases (generic, triangular, and theta) which complete the partial basis of cluster monomials are composed entirely of restrictions of minors. The discrepancy among these bases is accounted for by continuous parameters appearing in the classification of irreducible level-zero representations of affine Lie groups. We discuss how our results illuminate certain parallels between the classification of representations of finite-dimensional algebras and of integrable weight representations of Kac–Moody algebras.more » « less
-
Abstract Let $$k \leq n$$ be positive integers, and let $$X_n = (x_1, \dots , x_n)$$ be a list of $$n$$ variables. The Boolean product polynomial$$B_{n,k}(X_n)$$ is the product of the linear forms $$\sum _{i \in S} x_i$$, where $$S$$ ranges over all $$k$$-element subsets of $$\{1, 2, \dots , n\}$$. We prove that Boolean product polynomials are Schur positive. We do this via a new method of proving Schur positivity using vector bundles and a symmetric function operation we call Chern plethysm. This gives a geometric method for producing a vast array of Schur positive polynomials whose Schur positivity lacks (at present) a combinatorial or representation theoretic proof. We relate the polynomials $$B_{n,k}(X_n)$$ for certain $$k$$ to other combinatorial objects including derangements, positroids, alternating sign matrices, and reverse flagged fillings of a partition shape. We also relate $$B_{n,n-1}(X_n)$$ to a bigraded action of the symmetric group $${\mathfrak{S}}_n$$ on a divergence free quotient of superspace.more » « less
-
null (Ed.)We give an explicit combinatorial formula for the Laurent expansion of any arc or closed curve on an unpunctured triangulated orbifold. We do this by extending the snake graph construction of Musiker, Schiffler, and Williams to unpunctured orbifolds. In the case of an ordinary arc, this gives a combinatorial proof of positivity to the generalized cluster algebra from this orbifold.more » « less
An official website of the United States government

