skip to main content


Title: Unintended consequences: Effects of submarine cable deployment on Internet routing
We use traceroute and BGP data from globally distributed Internet measurement infrastructures to study the impact of a noteworthy submarine cable launch connecting Africa to South America. We leverage archived data from RIPE Atlas and CAIDA Ark platforms, as well as custom measurements from strategic vantage points, to quantify the differences in end-to-end latency and path lengths before and after deployment of this new South-Atlantic cable. We find that ASes operating in South America significantly benefit from this new cable, with reduced latency to all measured African countries. More surprising is that end-to-end latency to/from some regions of the world, including intra-African paths towards Angola, increased after switching to the cable. We track these unintended consequences to suboptimally circuitous IP paths that traveled from Africa to Europe, possibly North America, and South America before traveling back to Africa over the cable. Although some suboptimalities are expected given the lack of peering among neighboring ASes in the developing world, we found two other causes: (i) problematic intra-domain routing within a single Angolese network, and (ii) suboptimal routing/traffic engineering by its BGP neighbors. After notifying the operating AS of our results, we found that most of these suboptimalities were subsequently resolved. We designed our method to generalize to the study of other cable deployments or outages and share our code to promote reproducibility and extension of our work.  more » « less
Award ID(s):
1724853
NSF-PAR ID:
10186684
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Passive and Active Measurement Conference (PAM)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Linking South and North America via a South Atlantic high-performance Research & Education Network (REN) with the nations of Africa’s researchers, students, and knowledge sharing communities has become an increasingly strategic priority. Africa offers research and education communities with unique biological, environmental, geological, anthropological, and cultural resources. Research challenges in atmospheric and geosciences, materials sciences, tropical diseases, biology, astronomy, and other disciplines will benefit by enhancing the technological and social connections between the research and education communities of the U.S., Brazil / Latin America, and Africa. For many years, we have seen the dramatic benefits of high-performance networking in all areas of science and engineering. The Americas Africa Research and eduCation Lightpaths (AARCLight) project (NSF OAC-1638990) provided support for a grant to plan, design, and define a strategy for high capacity research and education network connectivity between the U.S. and West Africa. The study indicated a high level of enthusiasm to engage in collaborative research between the U.S., Brazil, and the African communities. There is collaborative interest in sharing network infrastructure resources in the US at AMPATH in Miami, in Fortaleza and Sao Paulo, Brazil where RedClara and ANSP connect at SouthernLight, and in Cape Town, South Africa. There is strong evidence of multiple ongoing domain science projects between the U.S., Brazil, and Africa that would benefit from a new South Atlantic link. The results of this planning grant successfully supported the need to light a 100G pathway using the South Atlantic Cable System (SACS) connecting to AmLight-ExP in Fortaleza, Brazil, and via the West African Cable System (WACS) cable to the Cape Town, South Africa open exchange point. Based on these findings, AmLight-ExP , a high-performance R&E network supported by a consortium of participants and funding from the NSF is the steward of the SACS 100G link. With collaborative support from UbuntuNet Alliance, RNP, SANReN, and others, AmLight is taking steps to make this first South Atlantic R&E network path available to connect all three continents. This critical infrastructure establishes a new South Atlantic route to integrate with AmLight-ExP, adding resiliency to the global R&E network fabric by adding a new path to Africa and Europe from the southern hemisphere. The SACS cable, shown on Figure 1 as a purple dashed line between Fortaleza, Brazil, and Luanda, Angola, is the first east - west subsea cable in the South Atlantic. We will leverage network infrastructure in the southern hemisphere that is available to the R&E community including spectrum on Monet committed to the AmLight-ExP linking Miami, Fortaleza, and São Paulo; a 100G Ethernet link on SACS; TENET’s capacity on WACS; the R&E exchange point in Cape Town-ZAOXI operated by SANReN (South African National Research Network) and TENET connected to WACS and the Ubuntunet Alliance Network connecting East Africa; and the South America eXchange R&E exchange point (SAX) in Fortaleza, operated by RNP and connected via AmLight-ExP via Monet to São Paulo and Miami. The paper will present 1) the key partners in the AmLight-SACS collaboration, 2) the activation plan, 3) how the network will be instrumented for performance measurements, and to capture data for network analytics, and 4) science drivers that will benefit from the use of a South Atlantic network route between the U.S., South America, and West Africa. 
    more » « less
  2. Linking South and North America via a South Atlantic high-performance Research & Education Network (REN) with the nations of Africa’s researchers, students, and knowledge sharing communities has become an increasingly strategic priority. Africa offers research and education communities with unique biological, environmental, geological, anthropological, and cultural resources. Research challenges in atmospheric and geosciences, materials sciences, tropical diseases, biology, astronomy, and other disciplines will benefit by enhancing the technological and social connections between the research and education communities of the U.S., Brazil / Latin America, and Africa. For many years, we have seen the dramatic benefits of high-performance networking in all areas of science and engineering. The Americas Africa Research and eduCation Lightpaths (AARCLight) project (NSF OAC-1638990) provided support for a grant to plan, design, and define a strategy for high capacity research and education network connectivity between the U.S. and West Africa. The study indicated a high level of enthusiasm to engage in collaborative research between the U.S., Brazil, and the African communities. There is collaborative interest in sharing network infrastructure resources in the US at AMPATH in Miami, in Fortaleza and Sao Paulo, Brazil where RedClara and ANSP connect at SouthernLight, and in Cape Town, South Africa. There is strong evidence of multiple ongoing domain science projects between the U.S., Brazil, and Africa that would benefit from a new South Atlantic link. The results of this planning grant successfully supported the need to light a 100G pathway using the South Atlantic Cable System (SACS) connecting to AmLight-ExP in Fortaleza, Brazil, and via the West African Cable System (WACS) cable to the Cape Town, South Africa open exchange point. Based on these findings, AmLight-ExP , a high-performance R&E network supported by a consortium of participants and funding from the NSF is the steward of the SACS 100G link. With collaborative support from UbuntuNet Alliance, RNP, SANReN, and others, AmLight is taking steps to make this first South Atlantic R&E network path available to connect all three continents. This critical infrastructure establishes a new South Atlantic route to integrate with AmLight-ExP, adding resiliency to the global R&E network fabric by adding a new path to Africa and Europe from the southern hemisphere. The SACS cable, shown on Figure 1 as a purple dashed line between Fortaleza, Brazil, and Luanda, Angola, is the first east - west subsea cable in the South Atlantic. We will leverage network infrastructure in the southern hemisphere that is available to the R&E community including spectrum on Monet committed to the AmLight-ExP linking Miami, Fortaleza and São Paulo; a 100G Ethernet link on SACS; TENET’s capacity on WACS; the R&E exchange point in Cape Town-ZAOXI operated by SANReN (South African National Research Network) and TENET connected to WACS and the Ubuntunet Alliance Network connecting East Africa; and the South America eXchange R&E exchange point (SAX) in Fortaleza, operated by RNP and connected via AmLight-ExP via Monet to São Paulo and Miami. The paper will present 1) the key partners in the AmLight-SACS collaboration, 2) the activation plan, 3) how the network will be instrumented for performance measurements, and to capture data for network analytics, and 4) science drivers that will benefit from the use of a South Atlantic network route between the U.S., South America and West Africa. 
    more » « less
  3. The Border Gateway Protocol (BGP) is a distributed protocol that manages interdomain routing without requiring a centralized record of which autonomous systems (ASes) connect to which others. Many methods have been devised to infer the AS topology from publicly available BGP data, but none provide a general way to handle the fact that the data are notoriously incomplete and subject to error. This paper describes a method for reliably inferring AS-level connectivity in the presence of measurement error using Bayesian statistical inference acting on BGP routing tables from multiple vantage points. We employ a novel approach for counting AS adjacency observations in the AS-PATH attribute data from public route collectors, along with a Bayesian algorithm to generate a statistical estimate of the AS-level network. Our approach also gives us a way to evaluate the accuracy of existing reconstruction methods and to identify advantageous locations for new route collectors or vantage points. 
    more » « less
  4. BGP was initially created assuming by default that all ASes are equal. Its policies and protocols, namely BGP, evolved to accommodate a hierarchical Internet, allowing an autonomous system more control over outgoing traffic than incoming traffic. However, the modern Internet is flat, making BGP asymmetrical. In particular, routing decisions are mostly in the hands of traffic sources (i.e., content providers). This leads to suboptimal routing decisions as traffic sources can only estimate route capacity at the destination (i.e., ISP). In this paper, we present the design of Unison, a system that allows an ISP to jointly optimize its intra-domain routes and inter-domain routes, in collaboration with content providers. Unison provides the ISP operator and the neighbors of the ISP with an abstraction ISP network in the form of a virtual switch. This abstraction allows the content providers to program the virtual switch with their requirements. It also allows the ISP to use that information to optimize the overall performance of its network. We show through extensive simulations that Unison can improve ISP throughput by up to 30% through cooperation with content providers. We also show that cooperation of content providers only improves performance, even for non-cooperating content providers (e.g., a single cooperating neighbour can improve ISP throughput by up to 6%). 
    more » « less
  5. Higher education and research science is being conducted in an era of information abundance. Sharing educational resources (e.g. Libraries, Curriculums, Online courses) and science resources, such as data commons, instrumentation, technology, and best practices, across national borders, can promote expanded global education goals and scientific inquiry and has the potential to advance discovery. Providing robust diverse Research and Education Networks (RENs) linking the U.S., Brazil (S. America) and African researcher and education communities is an increasingly strategic priority. Africa has developed research and education communities with unique biological, environmental, geological, anthropological, and cultural resources. Research challenges in atmospheric and geosciences, materials sciences, tropical diseases, biology, astronomy, and other disciplines will benefit by enhancing the technological and social connections between the research and education communities of these three continents via a S. Atlantic route to complement the existing North Atlantic routes via Europe. This paper will discuss the availability of new submarine cable spectrum for RENs via SACS between Luanda, Angola and Fortaleza, Brazil and the Monet cable between Fortaleza and Florida in the U.S. for use by research and education communities. This new infrastructure creates an unprecedented opportunity for the stakeholders to coordinate planning efforts to strategically make use of the offered spectrum towards serving the broadest communities of interest in research and education. The new links will be a foundational layer for the employment of R&E networks outfitted with leading edge technologies (e.g. Science DMZ, SDN, SDX, cybersecurity etc.). The paper seeks to leverage a discussion of opportunities for a new R&E Exchange point at Luanda, Angola, other connectivity options, and to further promote discussion and identify synergies with UbuntuNet members. Florida International University and AmLight consortium partners are planning, designing, and defining a strategy for high capacity connectivity research and education network connectivity between the US and Southwest Africa, called Americas Africa Research and eduCation Lightpaths (AARCLight). Furthermore, the other “end” of the SACS cable is being connected to an Open Fortaleza R&E Exchange point in Brazil. The new academic exchange point, South Atlantic Crossroads (SAX), is managed by Rede Nacional de Ensino e Pesquisa (RNP), where AmLight connects and continues on the Monet spectrum to Boca Raton Miami Florida. Having the transport service opened in Fortaleza will allow RENs from South America to collaborate with partners in Africa with significantly less delay, (at least 150ms lower) than using the current paths available. Interactive high-resolution video and big data applications will benefit from the establishment of the SAX international exchange point in Fortaleza. 
    more » « less