skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unintended consequences: Effects of submarine cable deployment on Internet routing
We use traceroute and BGP data from globally distributed Internet measurement infrastructures to study the impact of a noteworthy submarine cable launch connecting Africa to South America. We leverage archived data from RIPE Atlas and CAIDA Ark platforms, as well as custom measurements from strategic vantage points, to quantify the differences in end-to-end latency and path lengths before and after deployment of this new South-Atlantic cable. We find that ASes operating in South America significantly benefit from this new cable, with reduced latency to all measured African countries. More surprising is that end-to-end latency to/from some regions of the world, including intra-African paths towards Angola, increased after switching to the cable. We track these unintended consequences to suboptimally circuitous IP paths that traveled from Africa to Europe, possibly North America, and South America before traveling back to Africa over the cable. Although some suboptimalities are expected given the lack of peering among neighboring ASes in the developing world, we found two other causes: (i) problematic intra-domain routing within a single Angolese network, and (ii) suboptimal routing/traffic engineering by its BGP neighbors. After notifying the operating AS of our results, we found that most of these suboptimalities were subsequently resolved. We designed our method to generalize to the study of other cable deployments or outages and share our code to promote reproducibility and extension of our work.  more » « less
Award ID(s):
1724853
PAR ID:
10186684
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Passive and Active Measurement Conference (PAM)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Linking South and North America via a South Atlantic high-performance Research & Education Network (REN) with the nations of Africa’s researchers, students, and knowledge sharing communities has become an increasingly strategic priority. Africa offers research and education communities with unique biological, environmental, geological, anthropological, and cultural resources. Research challenges in atmospheric and geosciences, materials sciences, tropical diseases, biology, astronomy, and other disciplines will benefit by enhancing the technological and social connections between the research and education communities of the U.S., Brazil / Latin America, and Africa. For many years, we have seen the dramatic benefits of high-performance networking in all areas of science and engineering. The Americas Africa Research and eduCation Lightpaths (AARCLight) project (NSF OAC-1638990) provided support for a grant to plan, design, and define a strategy for high capacity research and education network connectivity between the U.S. and West Africa. The study indicated a high level of enthusiasm to engage in collaborative research between the U.S., Brazil, and the African communities. There is collaborative interest in sharing network infrastructure resources in the US at AMPATH in Miami, in Fortaleza and Sao Paulo, Brazil where RedClara and ANSP connect at SouthernLight, and in Cape Town, South Africa. There is strong evidence of multiple ongoing domain science projects between the U.S., Brazil, and Africa that would benefit from a new South Atlantic link. The results of this planning grant successfully supported the need to light a 100G pathway using the South Atlantic Cable System (SACS) connecting to AmLight-ExP in Fortaleza, Brazil, and via the West African Cable System (WACS) cable to the Cape Town, South Africa open exchange point. Based on these findings, AmLight-ExP , a high-performance R&E network supported by a consortium of participants and funding from the NSF is the steward of the SACS 100G link. With collaborative support from UbuntuNet Alliance, RNP, SANReN, and others, AmLight is taking steps to make this first South Atlantic R&E network path available to connect all three continents. This critical infrastructure establishes a new South Atlantic route to integrate with AmLight-ExP, adding resiliency to the global R&E network fabric by adding a new path to Africa and Europe from the southern hemisphere. The SACS cable, shown on Figure 1 as a purple dashed line between Fortaleza, Brazil, and Luanda, Angola, is the first east - west subsea cable in the South Atlantic. We will leverage network infrastructure in the southern hemisphere that is available to the R&E community including spectrum on Monet committed to the AmLight-ExP linking Miami, Fortaleza and São Paulo; a 100G Ethernet link on SACS; TENET’s capacity on WACS; the R&E exchange point in Cape Town-ZAOXI operated by SANReN (South African National Research Network) and TENET connected to WACS and the Ubuntunet Alliance Network connecting East Africa; and the South America eXchange R&E exchange point (SAX) in Fortaleza, operated by RNP and connected via AmLight-ExP via Monet to São Paulo and Miami. The paper will present 1) the key partners in the AmLight-SACS collaboration, 2) the activation plan, 3) how the network will be instrumented for performance measurements, and to capture data for network analytics, and 4) science drivers that will benefit from the use of a South Atlantic network route between the U.S., South America and West Africa. 
    more » « less
  2. Linking South and North America via a South Atlantic high-performance Research & Education Network (REN) with the nations of Africa’s researchers, students, and knowledge sharing communities has become an increasingly strategic priority. Africa offers research and education communities with unique biological, environmental, geological, anthropological, and cultural resources. Research challenges in atmospheric and geosciences, materials sciences, tropical diseases, biology, astronomy, and other disciplines will benefit by enhancing the technological and social connections between the research and education communities of the U.S., Brazil / Latin America, and Africa. For many years, we have seen the dramatic benefits of high-performance networking in all areas of science and engineering. The Americas Africa Research and eduCation Lightpaths (AARCLight) project (NSF OAC-1638990) provided support for a grant to plan, design, and define a strategy for high capacity research and education network connectivity between the U.S. and West Africa. The study indicated a high level of enthusiasm to engage in collaborative research between the U.S., Brazil, and the African communities. There is collaborative interest in sharing network infrastructure resources in the US at AMPATH in Miami, in Fortaleza and Sao Paulo, Brazil where RedClara and ANSP connect at SouthernLight, and in Cape Town, South Africa. There is strong evidence of multiple ongoing domain science projects between the U.S., Brazil, and Africa that would benefit from a new South Atlantic link. The results of this planning grant successfully supported the need to light a 100G pathway using the South Atlantic Cable System (SACS) connecting to AmLight-ExP in Fortaleza, Brazil, and via the West African Cable System (WACS) cable to the Cape Town, South Africa open exchange point. Based on these findings, AmLight-ExP , a high-performance R&E network supported by a consortium of participants and funding from the NSF is the steward of the SACS 100G link. With collaborative support from UbuntuNet Alliance, RNP, SANReN, and others, AmLight is taking steps to make this first South Atlantic R&E network path available to connect all three continents. This critical infrastructure establishes a new South Atlantic route to integrate with AmLight-ExP, adding resiliency to the global R&E network fabric by adding a new path to Africa and Europe from the southern hemisphere. The SACS cable, shown on Figure 1 as a purple dashed line between Fortaleza, Brazil, and Luanda, Angola, is the first east - west subsea cable in the South Atlantic. We will leverage network infrastructure in the southern hemisphere that is available to the R&E community including spectrum on Monet committed to the AmLight-ExP linking Miami, Fortaleza, and São Paulo; a 100G Ethernet link on SACS; TENET’s capacity on WACS; the R&E exchange point in Cape Town-ZAOXI operated by SANReN (South African National Research Network) and TENET connected to WACS and the Ubuntunet Alliance Network connecting East Africa; and the South America eXchange R&E exchange point (SAX) in Fortaleza, operated by RNP and connected via AmLight-ExP via Monet to São Paulo and Miami. The paper will present 1) the key partners in the AmLight-SACS collaboration, 2) the activation plan, 3) how the network will be instrumented for performance measurements, and to capture data for network analytics, and 4) science drivers that will benefit from the use of a South Atlantic network route between the U.S., South America, and West Africa. 
    more » « less
  3. The Border Gateway Protocol (BGP) offers several knobs to control routing decisions, but they are coarse-grained and only affect routes received from neighboring Autonomous Systems (AS). To enhance policy expressiveness, BGP was extended with thecommunitiesattribute, allowing an AS to attach metadata to routes and influence the routing decisions of a remote AS. The metadata can carryinformationto (e.g., where a route was received) or request anactionfrom a remote AS (e.g., not to export a route to one of its neighbors). Unfortunately, the semantics of BGP communities are not standardized, lack universal rules, and are poorly documented. In this work, we design and evaluate algorithms to automatically uncover BGPaction communitiesand ASes that violate standard practices by consistently using theinformation communitiesof other ASes, revealing undocumented relationships between them (e.g., siblings). Our experimental evaluation with billions of route announcements from public BGP route collectors from 2018 to 2023 uncovers previously unknown AS relationships and shows that our algorithm for identifying action communities achieves average precision and recall of 92.5% and 86.5%, respectively. 
    more » « less
  4. Withdrawal suppression has been a known weakness of BGP for over a decade. It has a significant detrimental impact on both the reliability and security of inter-domain routing on the Internet. This paper presents Route Status Transparency (RoST), the first design that efficiently and securely thwarts withdrawal suppression misconfigurations and attacks. RoST allows ASes to efficiently verify whether a route has been withdrawn; it is compatible with BGP as well as with BGP security enhancements. We use simulations on the Internet’s AS-level topology to evaluate the benefits from adopting RoST. We use an extensive real-world BGP announcements dataset to show that it is efficient in terms of storage, bandwidth, and computational requirements. 
    more » « less
  5. BGP was initially created assuming by default that all ASes are equal. Its policies and protocols, namely BGP, evolved to accommodate a hierarchical Internet, allowing an autonomous system more control over outgoing traffic than incoming traffic. However, the modern Internet is flat, making BGP asymmetrical. In particular, routing decisions are mostly in the hands of traffic sources (i.e., content providers). This leads to suboptimal routing decisions as traffic sources can only estimate route capacity at the destination (i.e., ISP). In this paper, we present the design of Unison, a system that allows an ISP to jointly optimize its intra-domain routes and inter-domain routes, in collaboration with content providers. Unison provides the ISP operator and the neighbors of the ISP with an abstraction ISP network in the form of a virtual switch. This abstraction allows the content providers to program the virtual switch with their requirements. It also allows the ISP to use that information to optimize the overall performance of its network. We show through extensive simulations that Unison can improve ISP throughput by up to 30% through cooperation with content providers. We also show that cooperation of content providers only improves performance, even for non-cooperating content providers (e.g., a single cooperating neighbour can improve ISP throughput by up to 6%). 
    more » « less