skip to main content


Title: Enhancing intracellular accumulation and target engagement of PROTACs with reversible covalent chemistry
Abstract

Current efforts in the proteolysis targeting chimera (PROTAC) field mostly focus on choosing an appropriate E3 ligase for the target protein, improving the binding affinities towards the target protein and the E3 ligase, and optimizing the PROTAC linker. However, due to the large molecular weights of PROTACs, their cellular uptake remains an issue. Through comparing how different warhead chemistry, reversible noncovalent (RNC), reversible covalent (RC), and irreversible covalent (IRC) binders, affects the degradation of Bruton’s Tyrosine Kinase (BTK), we serendipitously discover that cyano-acrylamide-based reversible covalent chemistry can significantly enhance the intracellular accumulation and target engagement of PROTACs and develop RC-1 as a reversible covalent BTK PROTAC with a high target occupancy as its corresponding kinase inhibitor and effectiveness as a dual functional inhibitor and degrader, a different mechanism-of-action for PROTACs. Importantly, this reversible covalent strategy is generalizable to improve other PROTACs, opening a path to enhance PROTAC efficacy.

 
more » « less
Award ID(s):
2019745
NSF-PAR ID:
10186743
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Proteolysis targeting chimera (PROTAC) is a state‐of‐the‐art technology for ablating undruggable targets. A PROTAC degrader achieves targeted protein degradation (TPD) through the simultaneous binding of a protein of interest (POI) and an E3 ligase to form a ternary complex. A nanofibril‐based PROTAC strategy to form a polynary (E3)m : PROTAC : (POI)ncomplex has not been reported in the TPD field up to this point. A recent innovation shows that a POI ligand and E3 ligase ligand don't have to be within a fused degrader molecule. Instead, they can be recruited to cellular proximity by a self‐assembly‐driving peptide and click chemistry. The resulting nanofibrils can recruit multiple POI and E3 ligase molecules to form a polynary complex as a degradation center. The so‐called Nano‐PROTAC provides a novel approach for TPD in cancer therapy.

     
    more » « less
  2. Abstract

    Proteolysis targeting chimera (PROTAC) is a state‐of‐the‐art technology for ablating undruggable targets. A PROTAC degrader achieves targeted protein degradation (TPD) through the simultaneous binding of a protein of interest (POI) and an E3 ligase to form a ternary complex. A nanofibril‐based PROTAC strategy to form a polynary (E3)m : PROTAC : (POI)ncomplex has not been reported in the TPD field up to this point. A recent innovation shows that a POI ligand and E3 ligase ligand don't have to be within a fused degrader molecule. Instead, they can be recruited to cellular proximity by a self‐assembly‐driving peptide and click chemistry. The resulting nanofibrils can recruit multiple POI and E3 ligase molecules to form a polynary complex as a degradation center. The so‐called Nano‐PROTAC provides a novel approach for TPD in cancer therapy.

     
    more » « less
  3. Abstract

    Most members of basic leucine zipper (bZIP) transcription factor (TF) subgroup A play important roles as positive effectors in abscisic acid (ABA) signaling during germination and/or in vegetative stress responses. In multiple plant species, one member, ABA insensitive 5 (ABI5), is a major TF that promotes seed maturation and blocks early seeding growth in response to ABA. Other members, referred to as either ABRE‐binding factors (ABFs), ABRE‐binding proteins (AREBs), or D3 protein‐binding factors (DPBFs), are implicated as major players in stress responses during vegetative growth. Studies on the proteolytic regulation of ABI5, ABF1, and ABF3 inArabidopsis thalianahave shown that the proteins have moderate degradation rates and accumulate in the presence of the proteasome inhibitor MG132. Exogenous ABA slows their degradation and the ubiquitin E3 ligase called KEEP ON GOING (KEG) is important for their degradation. However, there are some reported differences in degradation among subgroup A members. The conserved C‐terminal sequences (referred to as the C4 region) enhance degradation of ABI5 but stabilize ABF1 and ABF3. To better understand the proteolytic regulation of the ABI5/ABFs and determine whether there are differences between vegetative ABFs and ABI5, we studied the degradation of an additional family member, ABF2, and compared its in vitro degradation to that of ABI5. As previously seen for ABI5, ABF1, and ABF3, epitope‐tagged constitutively expressed ABF2 degrades in seedlings treated with cycloheximide and is stabilized following treatment with the proteasome inhibitor MG132. Tagged ABF2 protein accumulates when seedlings are treated with ABA, but its mRNA levels do not increase, suggesting that the protein is stabilized in the presence of ABA. ABF2 is also an in vitro ubiquitination substrate of the E3 ligase KEG and recombinant ABF2 is stable inkeglysates. ABF2 with a C4 deletion degrades more quickly in vitro than full‐length ABF2, as previously observed for ABF1 and ABF3, suggesting that the conserved C4 region contributes to its stability. In contrast to ABF2 and consistent with previously published work, ABI5 with C terminal deletions including an analogous C4 deletion is stabilized in vitro compared to full length ABI5. In vivo expression of an ABF1 C4 deletion protein appears to have reduced activity compared to equivalent levels of full length ABF1. Additional group A family members show similar proteolytic regulation by MG132 and ABA. Altogether, these results together with other work on ABI5 regulation suggest that the vegetative ABFs share proteolytic regulatory mechanisms that are not completely shared with ABI5.

     
    more » « less
  4. Summary

    The Tubby domain, named after the TUBBY protein in mice, binds to phosphatidylinositol 4,5‐bisphosphate. Arabidopsis has 11 Tubby domain‐containing proteins referred to as Tubby‐Like Proteins (TLPs). Of the 11 TLPs, 10 possess the N‐terminal F‐box domain, which can interact with SKP‐like proteins and form SKP1‐Cullin‐F‐box E3 ligase complexes. Although mice TUBBY has been extensively studied, plant TLPs' functions are scarcely detailed.

    In this study, we show that the Arabidopsis Tubby‐like protein 6 (TLP6) and its redundant homologs, TLP1, TLP2, TLP5, and TLP10, positively regulate Arabidopsis immune responses. Furthermore, in an immunoprecipitation mass spectrometry analysis to search for ubiquitination substrates of the TLPs, we identified two redundant phosphoinositide biosynthesis enzymes, phosphatidylinositol 4‐kinase β proteins (PI4Kβs), PI4Kβ1 and PI4Kβ2, as TLP interactors.

    Importantly, TLP6 overexpression lines fully phenocopy the phenotypes of thepi4kβ1,2mutant, while TLP6 overexpression also leads to increased PI4Kβ2 ubiquitination and reduction in its protein level in a proteasome‐dependent manner. Most significantly, TLP6 overexpression does not further enhance the autoimmunity of thepi4kβ1,2double mutant, supporting the hypothesis that TLP6 targets the PI4Kβs for ubiquitination and degradation.

    Thus, our study reveals a novel mechanism where TLPs promote plant immune responses by modulating the PI4Kβs protein levels.

     
    more » « less
  5. Abstract

    The Cullin 5 (CUL5) Ring E3 ligase uses adaptors Elongins B and C (ELOB/C) to bind different SOCS-box-containing substrate receptors, determining the substrate specificity of the ligase. The 18-member ankyrin and SOCS box (ASB) family is the largest substrate receptor family. Here we report cryo-EM data for the substrate, creatine kinase (CKB) bound to ASB9-ELOB/C, and for full-length CUL5 bound to the RING protein, RBX2, which binds various E2s. To date, no full structures are available either for a substrate-bound ASB nor for CUL5. Hydrogen–deuterium exchange (HDX-MS) mapped onto a full structural model of the ligase revealed long-range allostery extending from the substrate through CUL5. We propose a revised allosteric mechanism for how CUL-E3 ligases function. ASB9 and CUL5 behave as rigid rods, connected through a hinge provided by ELOB/C transmitting long-range allosteric crosstalk from the substrate through CUL5 to the RBX2 flexible linker.

     
    more » « less