Autonomous vehicles are becoming increasingly popular, but their reliance on computer systems to sense and operate in the physical world introduces new security risks. In this paper, we show that the location privacy of an autonomous vehicle may be compromised by software side-channel attacks if localization software shares a hardware platform with an attack program. In particular, we demonstrate that a cache side-channel attack can be used to infer the route or the location of a vehicle that runs the adaptive Monte-Carlo localization (AMCL) algorithm. The main contributions of the paper are as follows. First, we show that adaptive behaviors of perception and control algorithms may introduce new side-channel vulnerabilities that reveal the physical properties of a vehicle or its environment. Second, we introduce statistical learning models that infer the AMCL algorithm's state from cache access patterns and predict the route or the location of a vehicle from the trace of the AMCL state. Third, we implement and demonstrate the attack on a realistic software stack using real-world sensor data recorded on city roads. Our findings suggest that autonomous driving software needs strong timing-channel protection for location privacy.
Stealthy Tracking of Autonomous Vehicles with Cache Side Channels
Autonomous vehicles are becoming increasingly popular, but their reliance on computer systems to sense and operate in the physical world introduces new security risks. In this paper, we show that the location privacy of an autonomous vehicle may be compromised by software side-channel attacks if localization software shares a hardware platform with an attack program. In particular, we demonstrate that a cache side-channel attack can be used to infer the route or the location of a vehicle that runs the adaptive Monte-Carlo localization (AMCL) algorithm. The main contributions of the paper are as follows. First, we show that adaptive behaviors of perception and control algorithms may introduce new side-channel vulnerabilities that reveal the physical properties of a vehicle or its environment. Second, we introduce statistical learning models that infer the AMCL algorithm's state from cache access patterns and predict the route or the location of a vehicle from the trace of the AMCL state. Third, we implement and demonstrate the attack on a realistic software stack using real-world sensor data recorded on city roads. Our findings suggest that autonomous driving software needs strong timing-channel protection for location privacy.
- Award ID(s):
- 1932501
- Publication Date:
- NSF-PAR ID:
- 10186781
- Journal Name:
- 29th USENIX Security Symposium (USENIX Security 20)
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Website fingerprinting attacks, which use statistical analysis on network traffic to compromise user privacy, have been shown to be effective even if the traffic is sent over anonymity-preserving networks such as Tor. The classical attack model used to evaluate website fingerprinting attacks assumes an on-path adversary, who can observe all traffic traveling between the user’s computer and the secure network. In this work we investigate these attacks under a different attack model, in which the adversary is capable of sending a small amount of malicious JavaScript code to the target user’s computer. The malicious code mounts a cache side-channel attack, which exploits the effects of contention on the CPU’s cache, to identify other websites being browsed. The effectiveness of this attack scenario has never been systematically analyzed, especially in the open-world model which assumes that the user is visiting a mix of both sensitive and non-sensitive sites. We show that cache website fingerprinting attacks in JavaScript are highly feasible. Specifically, we use machine learning techniques to classify traces of cache activity. Unlike prior works, which try to identify cache conflicts, our work measures the overall occupancy of the last-level cache. We show that our approach achieves high classification accuracy inmore »
-
Post-quantum schemes are expected to replace existing public-key schemes within a decade in billions of devices. To facilitate the transition, the US National Institute for Standards and Technology (NIST) is running a standardization process. Multivariate signatures is one of the main categories in NIST's post-quantum cryptography competition. Among the four candidates in this category, the LUOV and Rainbow schemes are based on the Oil and Vinegar scheme, first introduced in 1997 which has withstood over two decades of cryptanalysis. Beyond mathematical security and efficiency, security against side-channel attacks is a major concern in the competition. The current sentiment is that post-quantum schemes may be more resistant to fault-injection attacks due to their large key sizes and the lack of algebraic structure. We show that this is not true. We introduce a novel hybrid attack, QuantumHammer, and demonstrate it on the constant-time implementation of LUOV currently in Round 2 of the NIST post-quantum competition. The QuantumHammer attack is a combination of two attacks, a bit-tracing attack enabled via Rowhammer fault injection and a divide and conquer attack that uses bit-tracing as an oracle. Using bit-tracing, an attacker with access to faulty signatures collected using Rowhammer attack, can recover secret key bitsmore »
-
Typical cybersecurity solutions emphasize on achieving defense functionalities. However, execution efficiency and scalability are equally important, especially for real-world deployment. Straightforward mappings of cybersecurity applications onto HPC platforms may significantly underutilize the HPC devices’ capacities. On the other hand, the sophisticated implementations are quite difficult: they require both in-depth understandings of cybersecurity domain-specific characteristics and HPC architecture and system model. In our work, we investigate three sub-areas in cybersecurity, including mobile software security, network security, and system security. They have the following performance issues, respectively: 1) The flow- and context-sensitive static analysis for the large and complex Android APKs are incredibly time-consuming. Existing CPU-only frameworks/tools have to set a timeout threshold to cease the program analysis to trade the precision for performance. 2) Network intrusion detection systems (NIDS) use automata processing as its searching core and requires line-speed processing. However, achieving high-speed automata processing is exceptionally difficult in both algorithm and implementation aspects. 3) It is unclear how the cache configurations impact time-driven cache side-channel attacks’ performance. This question remains open because it is difficult to conduct comparative measurement to study the impacts. In this dissertation, we demonstrate how application-specific characteristics can be leveraged to optimize implementations on various typesmore »
-
Motivated by the rise of quantum computers, existing public-key cryptosystems are expected to be replaced by post-quantum schemes in the next decade in billions of devices. To facilitate the transition, NIST is running a standardization process which is currently in its final Round. Only three digital signature schemes are left in the competition, among which Dilithium and Falcon are the ones based on lattices. Besides security and performance, significant attention has been given to resistance against implementation attacks that target side-channel leakage or fault injection response. Classical fault attacks on signature schemes make use of pairs of faulty and correct signatures to recover the secret key which only works on deterministic schemes. To counter such attacks, Dilithium offers a randomized version which makes each signature unique, even when signing identical messages. In this work, we introduce a novel Signature Correction Attack which not only applies to the deterministic version but also to the randomized version of Dilithium and is effective even on constant-time implementations using AVX2 instructions. The Signature Correction Attack exploits the mathematical structure of Dilithium to recover the secret key bits by using faulty signatures and the public-key. It can work for any fault mechanism which can inducemore »