Abstract This work investigates the role that pore structure plays in colloid retention across scales with a novel methodology based on image analysis. Experiments were designed to quantify–with robust statistics–the contribution from commonly proposed retention sites toward colloid immobilization. Specific retention sites include solid‐water interface, air‐water interface, air‐water‐solid triple point, grain‐to‐grain contacts, and thin films. Variable conditions for pore‐water content, velocity, and chemistry were tested in a model glass bead porous medium with silver microspheres. Concentration signals from effluent breakthrough and spatial profiles of retained particles from micro X‐ray Computed Tomography were used to compute mass balances and enumerate pore‐scale regions of interest in three dimensions. At the Darcy‐scale, retained colloids follow non‐monotonic deposition profiles, which implicates effects from flow‐stagnation zones. The spatial distribution of immobilized colloids along the porous medium depth was analyzed by retention site, revealing depth‐independent partitioning of colloids. At the pore‐scale, dominance and overall saturation of all retention sites considered indicated that the solid‐water interface and wedge‐shaped regions associated with flow‐stagnation (grain‐to‐grain contacts in saturated and air‐water‐solid triple points in unsaturated conditions) are the greatest contributors toward retention under the tested conditions. At the interface‐scale, xDLVO energy profiles were in agreement with pore‐scale observations. Our calculations suggest favorable interactions for colloids and solid‐water interfaces and for weak flocculation (e.g., at flow‐stagnation zones), but unfavorable interactions between colloids and air‐water interfaces. Overall, we demonstrate that pore‐structure plays a critical role in colloid immobilization and that Darcy‐, pore‐ and interface‐scales are consistent when the pore structure is taken into account.
more »
« less
Adhesion of Colloids and Bacteria to Porous Media: A Critical Review
Adhesion of colloids and bacteria to various surfaces is important for a variety of environmental phenomena including microbial biofouling and contamination prevention. Under saturated conditions, both colloids and bacteria have the opportunity to attach to porous medium surfaces. Under water unsaturated conditions or in the presence of the air-water interface, besides the porous medium surfaces, colloids and bacteria can also attach to the air-water interface, including the air-water-solid threephase interface. The magnitudes of adhesion of colloids and bacteria are correlated to the interactions of the colloids and bacteria with the surfaces, which are a function of their surface physicochemical properties. In this review, adhesion theories are revisited and adhesion of colloids and bacteria to porous media and the air-water interface is discussed. The interaction forces are quantified using various theoretical models including the DLVO models and used to interpret related adhesion. The impact of surfactants on colloid and bacterial adhesion is also discussed. The review also includes the implementation of the adhesion theory in interpreting colloid and bacterial fate and transport in the subsurface soil.
more »
« less
- Award ID(s):
- 1735235
- PAR ID:
- 10186860
- Date Published:
- Journal Name:
- Reviews of Adhesion and Adhesives
- Volume:
- 7
- Issue:
- 4
- ISSN:
- 2168-0965
- Page Range / eLocation ID:
- 417 to 460
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The anisotropy in the shape of polymeric particles has been demonstrated to have many advantages over spherical particulates, including bio‐mimetic behavior, shaped‐directed flow, deformation, surface adhesion, targeting, motion, and permeability. The layer‐by‐layer (LbL) assembly is uniquely suited for synthesizing anisotropic particles as this method allows for simple and versatile replication of diverse colloid geometries with precise control over their chemical and physical properties. This review highlights recent progress in anisotropic particles of micrometer and nanometer sizes produced by a templated multilayer assembly of synthetic and biological macromolecules. Synthetic approaches to produce capsules and hydrogels utilizing anisotropic templates such as biological, polymeric, bulk hydrogel, inorganic colloids, and metal–organic framework crystals as sacrificial templates are overviewed. Structure‐property relationships controlled by the anisotropy in particle shape and surface are discussed and compared with their spherical counterparts. Advances and challenges in controlling particle properties through varying shape anisotropy and surface asymmetry are outlined. The perspective applications of anisotropic colloids in biomedicine, including programmed behavior in the blood and tissues as artificial cells, nano‐motors/sensors, and intelligent drug carriers are also discussed.more » « less
-
Bacterial infections frequently occur within or near the vascular network as the vascular network connects organ systems and is essential in delivering and removing blood, essential nutrients, and waste products to and from organs. In turn, the vasculature plays a key role in the host immune response to bacterial infections. Technological advancements in microfluidic device design and development have yielded increasingly sophisticated and physiologically relevant models of the vasculature including vasculature-on-a-chip and organ-on-a-chip models. This review aims to highlight advancements in microfluidic device development that have enabled studies of the vascular response to bacteria and bacterial-derived molecules at or near the vascular interface. In the first section of this review, we discuss the use of parallel plate flow chambers and flow cells in studies of bacterial adhesion to the vasculature. We then highlight microfluidic models of the vasculature that have been utilized to study bacteria and bacterial-derived molecules at or near the vascular interface. Next, we review organ-on-a-chip models inclusive of the vasculature and pathogenic bacteria or bacterial-derived molecules that stimulate an inflammatory response within the model system. Finally, we provide recommendations for future research in advancing the understanding of host–bacteria interactions and responses during infections as well as in developing innovative antimicrobials for preventing and treating bacterial infections that capitalize on technological advancements in microfluidic device design and development.more » « less
-
This study introduces a novel theoretical model for upscaling colloid transport from the grain scale to the Darcy scale under both favorable and unfavorable conditions. The model integrates colloid interception history, where an interception occurs when colloids enter the near-surface zone within 200 nm of a collector, to capture the traditional exponential retention profile, as well as the anomalous, non-exponential behaviors observed under unfavorable conditions. The development of this theoretical model is based on a two-stage framework: first, upscaling from the grain scale to the single-interception scale, followed by upscaling from the single-interception scale to the Darcy scale. The initial stage addresses the distribution of colloids corresponding to a given interception order. The second stage focuses on the distribution of colloids across multiple interception orders. The key innovation of this work is the inclusion of the colloid removal process, where a fraction, denoted by $$\alpha$$, is removed at each encountered interception, rather than with each grain passed, as specified by classical colloid filtration theory. Our model accounts for scenarios under unfavorable conditions wherein if $$\alpha$$ remains constant, the distribution is exponential, albeit shallower relative to favorable conditions. Additionally, the model considers cases where $$\alpha$$ varies with interceptions, leading to multi-exponential and nonmonotonic retention profile shapes. In both scenarios, the proposed theoretical model offers a mathematical representation of colloid retention profiles under favorable and unfavorable conditions, including those exhibiting anomalous shapes.more » « less
-
Abstract Liquid–liquid or liquid–air interfaces provide interesting environments to study colloids and are ubiquitous in nature and industry, as well as relevant in applications involving emulsions and foams. They present a particularly intriguing environment for studying active particles which exhibit a host of phenomena not seen in passive systems. Active particles can also provide on‐demand controllability that greatly expands their use in future applications. However, research on active particles at interfaces is relatively rare compared to those at solid surfaces or in the bulk. Here, magnetically steerable active colloids at liquid–air interfaces that self‐propel by bubble production via the catalytic decomposition of chemical fuel in the liquid medium is presented. The bubble formation and dynamics of “patchy” colloids with a patch of catalytic coating on their surface is investigated and compared to more traditional Janus colloids with a hemispherical coating. The patchy colloids tend to produce smaller bubbles and undergo smoother motion which makes them beneficial for applications such as precise micro‐manipulation. This is demonstrated by manipulating and assembling patterns of passive spheres on a substrate as well as at an air–liquid interface. The propulsion and bubble formation of both the Janus and patchy colloids is characterized and it is found that previously proposed theories are insufficient to fully describe their motion and bubble bursting mechanism. Additionally, the colloids, which reside at the air–liquid interface, demonstrate novel interfacial positive gravitaxis towards the droplet edges which is attributed to a torque resulting from opposing downward and buoyant forces on the colloids.more » « less
An official website of the United States government

