skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Retention Site Contribution Toward Silver Particle Immobilization in Porous Media
Abstract This work investigates the role that pore structure plays in colloid retention across scales with a novel methodology based on image analysis. Experiments were designed to quantify–with robust statistics–the contribution from commonly proposed retention sites toward colloid immobilization. Specific retention sites include solid‐water interface, air‐water interface, air‐water‐solid triple point, grain‐to‐grain contacts, and thin films. Variable conditions for pore‐water content, velocity, and chemistry were tested in a model glass bead porous medium with silver microspheres. Concentration signals from effluent breakthrough and spatial profiles of retained particles from micro X‐ray Computed Tomography were used to compute mass balances and enumerate pore‐scale regions of interest in three dimensions. At the Darcy‐scale, retained colloids follow non‐monotonic deposition profiles, which implicates effects from flow‐stagnation zones. The spatial distribution of immobilized colloids along the porous medium depth was analyzed by retention site, revealing depth‐independent partitioning of colloids. At the pore‐scale, dominance and overall saturation of all retention sites considered indicated that the solid‐water interface and wedge‐shaped regions associated with flow‐stagnation (grain‐to‐grain contacts in saturated and air‐water‐solid triple points in unsaturated conditions) are the greatest contributors toward retention under the tested conditions. At the interface‐scale, xDLVO energy profiles were in agreement with pore‐scale observations. Our calculations suggest favorable interactions for colloids and solid‐water interfaces and for weak flocculation (e.g., at flow‐stagnation zones), but unfavorable interactions between colloids and air‐water interfaces. Overall, we demonstrate that pore‐structure plays a critical role in colloid immobilization and that Darcy‐, pore‐ and interface‐scales are consistent when the pore structure is taken into account.  more » « less
Award ID(s):
1847689
PAR ID:
10445350
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
58
Issue:
5
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study introduces a novel theoretical model for upscaling colloid transport from the grain scale to the Darcy scale under both favorable and unfavorable conditions. The model integrates colloid interception history, where an interception occurs when colloids enter the near-surface zone within 200 nm of a collector, to capture the traditional exponential retention profile, as well as the anomalous, non-exponential behaviors observed under unfavorable conditions. The development of this theoretical model is based on a two-stage framework: first, upscaling from the grain scale to the single-interception scale, followed by upscaling from the single-interception scale to the Darcy scale. The initial stage addresses the distribution of colloids corresponding to a given interception order. The second stage focuses on the distribution of colloids across multiple interception orders. The key innovation of this work is the inclusion of the colloid removal process, where a fraction, denoted by $$\alpha$$, is removed at each encountered interception, rather than with each grain passed, as specified by classical colloid filtration theory. Our model accounts for scenarios under unfavorable conditions wherein if $$\alpha$$ remains constant, the distribution is exponential, albeit shallower relative to favorable conditions. Additionally, the model considers cases where $$\alpha$$ varies with interceptions, leading to multi-exponential and nonmonotonic retention profile shapes. In both scenarios, the proposed theoretical model offers a mathematical representation of colloid retention profiles under favorable and unfavorable conditions, including those exhibiting anomalous shapes. 
    more » « less
  2. Adhesion of colloids and bacteria to various surfaces is important for a variety of environmental phenomena including microbial biofouling and contamination prevention. Under saturated conditions, both colloids and bacteria have the opportunity to attach to porous medium surfaces. Under water unsaturated conditions or in the presence of the air-water interface, besides the porous medium surfaces, colloids and bacteria can also attach to the air-water interface, including the air-water-solid threephase interface. The magnitudes of adhesion of colloids and bacteria are correlated to the interactions of the colloids and bacteria with the surfaces, which are a function of their surface physicochemical properties. In this review, adhesion theories are revisited and adhesion of colloids and bacteria to porous media and the air-water interface is discussed. The interaction forces are quantified using various theoretical models including the DLVO models and used to interpret related adhesion. The impact of surfactants on colloid and bacterial adhesion is also discussed. The review also includes the implementation of the adhesion theory in interpreting colloid and bacterial fate and transport in the subsurface soil. 
    more » « less
  3. null (Ed.)
    We derive expressions for the leading-order far-field flows generated by externally driven and active (swimming) colloids at planar fluid–fluid interfaces. We consider colloids adjacent to the interface or adhered to the interface with a pinned contact line. The Reynolds and capillary numbers are assumed much less than unity, in line with typical micron-scale colloids involving air– or alkane–aqueous interfaces. For driven colloids, the leading-order flow is given by the point-force (and/or torque) response of this system. For active colloids, the force-dipole (stresslet) response occurs at leading order. At clean (surfactant-free) interfaces, these hydrodynamic modes are essentially a restricted set of the usual Stokes multipoles in a bulk fluid. To leading order, driven colloids exert Stokeslets parallel to the interface, while active colloids drive differently oriented stresslets depending on the colloid's orientation. We then consider how these modes are altered by the presence of an incompressible interface, a typical circumstance for colloidal systems at small capillary numbers in the presence of surfactant. The leading-order modes for driven and active colloids are restructured dramatically. For driven colloids, interfacial incompressibility substantially weakens the far-field flow normal to the interface; the point-force response drives flow only parallel to the interface. However, Marangoni stresses induce a new dipolar mode, which lacks an analogue on a clean interface. Surface-viscous stresses, if present, potentially generate very long-ranged flow on the interface and the surrounding fluids. Our results have important implications for colloid assembly and advective mass transport enhancement near fluid boundaries. 
    more » « less
  4. Abstract Air–water interfacial adsorption complicates per‐ and polyfluoroalkyl substance (PFAS) transport in vadose zones. Air–water interfaces can arise from pendular rings between soil grains and thin water films on grain surfaces, the latter of which account for over 90% of the total air–water interfaces for most field‐relevant conditions. However, whether all thin‐water‐film air–water interfaces are accessible by PFAS and how mass‐transfer limitations in thin water films control PFAS transport in soils remain unknown. We develop a pore‐scale model that represents both PFAS adsorption at bulk capillary and thin‐water‐film air–water interfaces and the mass‐transfer processes between bulk capillary water and thin water films (including advection, aqueous diffusion, and surface diffusion along air–water interfaces). We apply the pore‐scale model to a series of numerical experiments—constrained by experimentally determined hydraulic parameters and air–water interfacial area data sets—to examine the impact of thin‐water‐film mass‐transfer limitations in a sand medium. Our analyses suggest: (a) The mass‐transfer limitations between bulk capillary water and thin water films inside a pore are negligible due to surface diffusion. (b) However, strong mass‐transfer limitations arise in thin water films of pore clusters where pendular rings disconnect. The mass‐transfer limitations lead to early arrival and long tailing behaviors even if surface diffusion is present. (c) Despite the mass‐transfer limitations, all air–water interfaces in the thin water films were accessed by PFAS under the simulated conditions. These findings highlight the importance of incorporating the thin‐water‐film mass‐transfer limitations and surface diffusion for modeling PFAS transport in vadose zones. 
    more » « less
  5. Abstract This study investigates the impact of initial injection conditions on colloid transport and retention in porous media. Employing both uniform and flux‐weighted distributions for the initial colloid locations, the research explores diverse flow scenarios, ranging from simple Poiseuille flow to more complex geometries. The results underscore the pivotal role the injection mode plays on the shape of colloid retention profiles (RPs), particularly those that display anomalous non‐exponential decay with distance. Broadly, uniform injection yields multi‐exponential profiles, while flux‐weighted injection can lead to nonmonotonic profiles in certain conditions. The study identifies preferential flow paths as a key factor in producing nonmonotonic RPs. Notably, variations in fluid velocity, colloid size, and ionic strength affect attachment rates near the inlet but do not significantly alter the qualitative transition between multi‐exponential and nonmonotonic profiles. The study emphasizes that the chosen injection mode dictates retention profile shapes, highlighting its crucial role in porous media colloid transport. These insights provide a possible partial explanation of previously observed anomalous transport behaviors, urging consideration of injection conditions in interpretations of experiments, where they can be difficult to accurately control and measure with high precision. 
    more » « less