This paper documents the effects of an additive manufacturing course on two sets of students: (1) the undergraduates who took the course and (2) the middle and high school students who visited our labs. At the time of the conference, nine semesters of data (three years at three schools) will have been collected, as well as data from the middle and high school students who visited our labs. Overall, our research questions were: (1) what is the effect of this course on the content knowledge of (a) enrolled undergraduates and (b) middle and high school students? And (2) what is the effect of this course on the attitudes towards engineering and self-efficacy in engineering for (a) enrolled undergraduates and (b) middle and high school students? To determine the answers, our longitudinal matched-pairs data collection was conducted. In short, as measured by t-test, all students improved on content knowledge (p<.01), but female students improved slightly more than male students (+9.89 versus +9.01, respectively). Undergraduates did not change their minds about the factors that are important in engineering, although they did significantly change their self-efficacy ratings in some skills because of the course. In particular, undergraduates rated themselves higher in teamwork, creativity,more »
The Broader Impacts of an Additive Manufacturing Course at Three Large Universities
This paper documents the effects of an additive manufacturing course on two sets of students: (1) the undergraduates who took the course and (2) the middle and high school students who visited our labs. At the time of the conference, nine semesters of data (three years at three schools) will have been collected, as well as data from the middle and high school students who visited our labs. Overall, our research questions were: (1) what is the effect of this course on the content knowledge of (a) enrolled undergraduates and (b) middle and high school students? And (2) what is the effect of this course on the attitudes towards engineering and self-efficacy in engineering for (a) enrolled undergraduates and (b) middle and high school students? To determine the answers, our longitudinal matched-pairs data collection was conducted. In short, as measured by t-test, all students improved on content knowledge (p less than .01), but female students improved slightly more than male students (+9.89 versus +9.01, respectively). Undergraduates did not change their minds about the factors that are important in engineering, although they did significantly change their self-efficacy ratings in some skills because of the course. In particular, undergraduates rated themselves higher more »
- Award ID(s):
- 1712391
- Publication Date:
- NSF-PAR ID:
- 10186892
- Journal Name:
- 2020 ASEE Virtual Annual Conference
- Page Range or eLocation-ID:
- https://peer.asee.org/33958
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper is the culmination of four years of an NSF-funded project implementing and assessing an undergraduate additive manufacturing course at three large state universities: Texas Tech University, Kansas State University, and California State University – Northridge. The research questions addressed are: (1) What are the changes in skill and knowledge concerning additive manufacturing experienced by undergraduate students? (2) What is the effect of this course on attitudes towards engineering and self-efficacy in engineering for enrolled undergraduate students? The sample consists of four years of data from the undergraduate students enrolled in the course at all three universities (combined N = 196). Our method for data collection was matched-pair surveys that contained both (i) an assessment for content knowledge and (ii) an attitudinal assessment previously validated in published research for data collection about attitudes towards engineering. Matched-pair surveys means that we collected data from Student X at Time 1 (before being taught) and then again from at Time 2 (after being taught) and are able to directly compare any change in content knowledge or attitude within the same person. We also collected demographic information to be able to see whether changes in, for example, women differed from those in men.more »
-
Additive manufacturing (AM) is prevalent in academic, industrial, and layperson use for the design and creation of objects via joining materials together in a layer upon layer fashion. However, few universities have an undergraduate course dedicated to it. Thus, using NSF IUSE support [grant number redacted for review] from the Exploration and Design Tier of the Engaged Student Learning Track, this project has created and implemented such a course at three large universities: Texas Tech (a Carnegie high research productivity and Hispanic Serving Institution), Kansas State (a Carnegie high research productivity and land grant university) and California State, Northridge (the largest of all the California State campuses and highly ranked in serving underprivileged students). Our research team includes engineering professors and a sociologist trained in assessment and K-12 outreach to determine the effects of the course on the undergraduate and high school students. We are currently in year two of the three years of NSF support. The course focuses on the fundamentals of the three families of prevailing AM processes: extrusion-based, powder-based, and liquid-based, as well as learning about practical solutions to additive manufacturing of common engineering materials including polymers, metals and alloys, ceramics, and composites. It has a lecturemore »
-
Robotics has emerged as one of the most popular subjects in STEM (Science, Technology, Engineering, and Mathematics) education for students in elementary, middle, and high schools, providing them with an opportunity to gain knowledge of engineering and technology. In recent years, flying robots (or drones) have also gained popularity as teaching tool to impart the fundamentals of computer programming to high school students. However, despite completing the programming course, students may still lack an understanding of the working principle of drones. This paper proposes an approach to teach students the basic principles of drone aeronautics through laboratory programming. This course was designed by professors from Vaughn College of Aeronautics and Technology for high school students who work on after-school and weekend programs during the school year or summer. In early 2021, the college applied for and was approved to offer a certificate program in UAS (Unmanned Aerial Systems) Designs, Applications, and Operations to college students by the Education Department of New York State. Later that year, the college also received a grant from the Federal Aviation Administration (FAA) to provide tuition-free early higher education for high school students, allowing them to complete the majority of the credits in the UASmore »
-
Engineering undergraduates’ academic writing experiences prior to entry-level engineering lab courses can be classified into three different groups: a group with both rhetorically-focused writing (e.g., first-year-composition) and technical writing courses; a group with only rhetorically-focused writing courses; and a group with no rhetorically-focused writing or technical writing courses. Using a lens of transfer theories that explain how much knowledge from one context is used or adapted in new contexts, these three groups can be called concurrent, vertical, and absent transfer groups respectively. This study, which is part of a larger project developing and implementing writing-focused modules in engineering labs, aims to investigate undergraduates’ perspectives on readiness, writing transfer, and effectiveness of writing instructions in engineering lab report writing through a student survey. End-of-term online surveys (n = 40) of undergraduates in entry-level engineering lab courses were collected from three distinctive universities: an urban, commuter, public research university; an urban, private, teaching-focused university; and a rural, public, teaching-focused university. The survey questions have three parts: 1) student perspectives in writing in engineering disciplines; 2) how students use prior writing knowledge when writing lab reports in engineering lab courses; and 3) how engineering lab course writing instructions impact students’ engineering lab reportmore »