After eukaryotic fertilization, gamete nuclei migrate to fuse parental genomes in order to initiate development of the next generation. In most animals, microtubules control female and male pronuclear migration in the zygote. Flowering plants, on the other hand, have evolved actin filament (F-actin)-based sperm nuclear migration systems for karyogamy. Flowering plants have also evolved a unique double-fertilization process: two female gametophytic cells, the egg and central cells, are each fertilized by a sperm cell. The molecular and cellular mechanisms of how flowering plants utilize and control F-actin for double-fertilization events are largely unknown. Using confocal microscopy live-cell imaging with a combination of pharmacological and genetic approaches, we identified factors involved in F-actin dynamics and sperm nuclear migration inArabidopsis thaliana(Arabidopsis) andNicotiana tabacum(tobacco). We demonstrate that the F-actin regulator, SCAR2, but not the ARP2/3 protein complex, controls the coordinated active F-actin movement. These results imply that an ARP2/3-independent WAVE/SCAR-signaling pathway regulates F-actin dynamics in female gametophytic cells for fertilization. We also identify that the class XI myosin XI-G controls active F-actin movement in theArabidopsiscentral cell. XI-G is not a simple transporter, moving cargos along F-actin, but can generate forces that control the dynamic movement of F-actin for fertilization. Our results provide insights into the mechanisms that control gamete nuclear migration and reveal regulatory pathways for dynamic F-actin movement in flowering plants.
more »
« less
Cellular dynamics of double fertilization and early embryogenesis in flowering plants
Flowering plants (angiosperms) perform a unique double fertilization in which two sperm cells fuse with two female gamete cells in the embryo sac to develop a seed. Furthermore, during land plant evolution, the mode of sexual reproduction has been modified dramatically from motile sperm in the early-diverging land plants, such as mosses and ferns as well as some gymnosperms (Ginkgo and cycads) to nonmotile sperm that are delivered to female gametes by the pollen tube in flowering plants. Recent studies have revealed the cellular dynamics and molecular mechanisms for the complex series of double fertilization processes and elucidated differences and similarities between animals and plants. Here, together with a brief comparison with animals, we review the current understanding of flowering plant zygote dynamics, covering from gamete nuclear migration, karyogamy, and polyspermy block, to zygotic genome activation as well as asymmetrical division of the zygote. Further analyses of the detailed molecular and cellular mechanisms of flowering plant fertilization should shed light on the evolution of the unique sexual reproduction of flowering plants.
more »
« less
- Award ID(s):
- 1928836
- PAR ID:
- 10187113
- Date Published:
- Journal Name:
- Journal of Experimental Zoology Part B: Molecular and Developmental Evolution
- ISSN:
- 1552-5007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Land plants have evolved successive changes during their conquest of the land and innovations in sexual reproduction have played a major role in their terrestrialization. Recent years have seen many revealing dissections of the molecular mechanisms of sexual reproduction and much new genomics data from the land plant lineage, including early diverging land plants, as well as algae. This new knowledge is being integrated to further understand how sexual reproduction in land plants evolved, identifying highly conserved factors and pathways, but also molecular changes that underpinned the emergence of new modes of sexual reproduction. Here, we review recent advances in the knowledge of land plant sexual reproduction from an evolutionary perspective and also revisit the evolution of angiosperm double fertilization.more » « less
-
Abstract Key messagePollen tubes from closely related species and mutants lacking pollen tube MYB transcription factors are able to initiate FER/LRE-dependent synergid cell calcium oscillations. AbstractReproductive isolation leads to the evolution of new species; however, the molecular mechanisms that maintain reproductive barriers between sympatric species are not well defined. In flowering plants, sperm cells are immotile and are delivered to female gametes by the pollen grain. After landing on the stigmatic surface, the pollen grain germinates a polarized extension, the pollen tube, into floral tissue. After growing via polar extension to the female gametes and shuttling its cargo of sperm cells through its cytoplasm, the pollen tube signals its arrival and identity to synergid cells that flank the egg. If signaling is successful, the pollen tube and receptive synergid cell burst, and sperm cells are released for fusion with female gametes. To better understand cell–cell recognition during reproduction and how reproductive barriers are maintained between closely related species, pollen tube-initiated synergid cell calcium ion dynamics were examined during interspecific crosses. It was observed that interspecific pollen tubes successfully trigger synergid cell calcium oscillations—a hallmark of reproductive success—but signaling fails downstream of key signaling genes and sperm are not released. This work further defines pollen tube–synergid cell signaling as a critical block to interspecific hybridization and suggests that the FERONIA/LORELEI signaling mechanism plays multiple parallel roles during pollen tube reception.more » « less
-
The haploid female gametophyte (embryo sac) is an essential reproductive unit of flowering plants, usually comprising four specialized cell types, including the female gametes (egg cell and central cell). The differentiation of these cells relies on spatial signals which pattern the gametophyte along a proximal-distal axis, but the molecular and genetic mechanisms by which cell identities are determined in the embryo sac have long been a mystery. Recent identification of key genes for cell fate specification and their relationship to hormonal signaling pathways that act on positional cues has provided new insights into these processes. A model for differentiation can be devised with egg cell fate as a default state of the female gametophyte and with other cell types specified by the action of spatially regulated factors. Cell-to-cell communication within the gametophyte is also important for maintaining cell identity as well as facilitating fertilization of the female gametes by the male gametes (sperm cells).more » « less
-
The endosperm, a product of double fertilization, is one of the keys to the evolution and success of angiosperms in conquering the land. While there are differences in endosperm development among flowering plants, the most common form is coenocytic growth, where the endosperm initially undergoes nuclear division without cytokinesis and eventually becomes cellularized. This complex process requires interplay among networks of transcription factors such as MADS-box, auxin response factors (ARFs), and phytohormones. The role of cytoskeletal elements in shaping the coenocytic endosperm and influencing seed growth also becomes evident. This review offers a recent understanding of the molecular and cellular dynamics in coenocytic endosperm development and their contributions to the final seed size.more » « less
An official website of the United States government

