skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Ink Release and Swimming Behavior in the Oceanic Ctenophore Eurhamphaea vexilligera
Award ID(s):
1830015 1829932 1829913 1829945
NSF-PAR ID:
10187117
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Biological Bulletin
Volume:
238
Issue:
3
ISSN:
0006-3185
Page Range / eLocation ID:
206 to 213
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    The seismic quality factor (Q) of the Earth’s mantle is of great importance for the understanding of the physical and chemical properties that control mantle anelasticity. The radial structure of the Earth’s Q is less well resolved compared to its wave speed structure, and large discrepancies exist among global 1-D Q models. In this study, we build a global data set of amplitude measurements of S, SS, SSS and SSSS waves using earthquakes that occurred between 2009 and 2017 with moment magnitudes ranging from 6.5 to 8.0. Synthetic seismograms for those events are computed in a 1-D reference model PREM, and amplitude ratios between observed and synthetic seismograms are calculated in the frequency domain by spectra division, with measurement windows determined based on visual inspection of seismograms. We simulate wave propagation in a global velocity model S40RTS based on SPECFEM3D and show that the average amplitude ratio as a function of epicentral distance is not sensitive to 3-D focusing and defocusing for the source–receiver configuration of the data set. This data set includes about 5500 S and SS measurements that are not affected by mantle transition zone triplications (multiple ray paths), and those measurements are applied in linear inversions to obtain a preliminary 1-D Q model QMSI. This model reveals a high Q region in the uppermost lower mantle. While model QMSI improves the overall datafit of the entire data set, it does not fully explain SS amplitudes at short epicentral distances or the amplitudes of the SSS and SSSS waves. Using forward modelling, we modify the 1-D model QMSI iteratively to reduce the overall amplitude misfit of the entire data set. The final Q model QMSF requires a stronger and thicker high Q region at depths between 600 and 900 km. This anelastic structure indicates possible viscosity layering in the mid mantle.

     
    more » « less
  2. null (Ed.)