skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1829913

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lobate ctenophores are often numerically dominant members of oceanic epipelagic and midwater ecosystems. Despite this, little is known about their trophic ecology. Multiple, co‐occurring species are often found in these ecosystems and appear to feed similarly via feeding currents that entrain prey. We quantified the hydrodynamics, morphology, and behavior of four co‐occurring, cosmopolitan lobate species (Eurhamphaea vexilligera,Ocyropsis crystallina,Bolinopsis vitrea, andLeucothea multicornis) to evaluate whether their feeding mechanics lead to differential feeding rates and prey selection. We compared the feeding characteristics of these four oceanic species to the coastal lobate ctenophore,Mnemiopsis leidyi, which is known as a voracious zooplanktivore. We found that despite their morphological diversity, the five lobate species used the same mechanism to generate their feeding current—the hydrodynamics of their feeding currents were similarly laminar and with very low fluid deformation rates. Despite having similar feeding current traits, the species had different in situ swimming behaviors and feeding postures. We show that these different behaviors and postures lead to different prey encounter rates and that several of the oceanic species have the potential to feed at rates similar to or greater thanM. leidyi. As such, the individual and combined trophic impact of oceanic lobate ctenophores is likely to be much greater than previously predicted. 
    more » « less
  2. Abstract An abundance of swimming animals have converged upon a common swimming strategy using multiple propulsors coordinated as metachronal waves. The shared kinematics suggest that even morphologically and systematically diverse animals use similar fluid dynamic relationships to generate swimming thrust. We quantified the kinematics and hydrodynamics of a diverse group of small swimming animals who use multiple propulsors, e.g. limbs or ctenes, which move with antiplectic metachronal waves to generate thrust. Here we show that even at these relatively small scales the bending movements of limbs and ctenes conform to the patterns observed for much larger swimming animals. We show that, like other swimming animals, the propulsors of these metachronal swimmers rely on generating negative pressure along their surfaces to generate forward thrust (i.e., suction thrust). Relying on negative pressure, as opposed to high pushing pressure, facilitates metachronal waves and enables these swimmers to exploit readily produced hydrodynamic structures. Understanding the role of negative pressure fields in metachronal swimmers may provide clues about the hydrodynamic traits shared by swimming and flying animals. 
    more » « less
  3. Abstract Ctenophores coordinate large macrociliary structures called ctenes to propel themselves through the water. The morphology and kinematics of the ctenes mediate swimming performance. We investigated morphological and kinematic factors affecting swimming performance in free‐swimming ctenophores (Pleurobrachia bachei) using high speed videography. Our morphological results showed that the relationship between body size and ctene morphology and arrangement inP. bacheiwere well described using linear (i.e., isometric) relationships, which suggests functional limitations of ctenes that vary among individuals of different sizes. Our kinematic results showed that isometric constraints on swimming performance can potentially be overcome by alterations in kinematics: (a) swimming speed inP. bacheiincreased with ctene beat frequency over a range of body lengths, and (b) the separation of ctenes into clumps of cilia allowed the ctene to increase in width during the effective stroke and decrease in width during recovery. Separation increases the surface area of the ctene during the effective stroke, likely increasing the thrust produced. The finding that ctenes are not monoliths and instead are separated into clumps of cilia has not been previously described, and we subsequently observed this trait in three other ctenophore species:Euplokamis dunlapae,Bolinopsis infundibulum,andBeroe mitrata. Flexibility in function may be a necessary corollary to isometric development of the ctenes as propulsive structures. 
    more » « less
  4. Free, publicly-accessible full text available April 1, 2026
  5. Jellyfish have provided insight into important components of animal propulsion, such as suction thrust, passive energy recapture, vortex wall effects, and the rotational mechanics of turning. These traits are critically important to jellyfish because they must propel themselves despite severe limitations on force production imposed by rudimentary cnidarian muscular structures. Consequently, jellyfish swimming can occur only by careful orchestration of fluid interactions. Yet these mechanics may be more broadly instructive because they also characterize processes shared with other animal swimmers, whose structural and neurological complexity can obscure these interactions. In comparison with other animal models, the structural simplicity, comparative energetic efficiency, and ease of use in laboratory experimentation allow jellyfish to serve as favorable test subjects for exploration of the hydrodynamic bases of animal propulsion. These same attributes also make jellyfish valuable models for insight into biomimetic or bioinspired engineering of swimming vehicles. Here, we review advances in understanding of propulsive mechanics derived from jellyfish models as a pathway toward the application of animal mechanics to vehicle designs. Expected final online publication date for the Annual Review of Marine Science, Volume 13 is January 3, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  6. null (Ed.)
  7. Swimming bell kinematics and hydrodynamic wake structures were documented during multiple pulsation cycles of a Eutonina indicans (Romanes, 1876) medusa swimming in a predominantly linear path. Bell contractions produced pairs of vortex rings with opposite rotational sense. Analyses of the momentum flux in these wake structures demonstrated that vortex dynamics related directly to variations in the medusa swimming speed. Furthermore, a bulk of the momentum flux in the wake was concentrated spatially at the interfaces between oppositely rotating vortices rings. Similar thrust-producing wake structures have been described in models of fish swimming, which posit vortex rings as vehicles for energy transport from locations of body bending to regions where interacting pairs of opposite-sign vortex rings accelerate the flow into linear propulsive jets. These findings support efforts toward soft robotic biomimetic propulsion. 
    more » « less