Location-based social networks (LBSNs) have been studied extensively in recent years. However, utilizing real-world LBSN data sets yields several weaknesses: sparse and small data sets, privacy concerns, and a lack of authoritative ground-truth. To overcome these weaknesses, we leverage a large-scale LBSN simulation to create a framework to simulate human behavior and to create synthetic but realistic LBSN data based on human patterns of life. Such data not only captures the location of users over time but also their interactions via social networks. Patterns of life are simulated by giving agents (i.e., people) an array of “needs” that they aim to satisfy, e.g., agents go home when they are tired, to restaurants when they are hungry, to work to cover their financial needs, and to recreational sites to meet friends and satisfy their social needs. While existing real-world LBSN data sets are trivially small, the proposed framework provides a source for massive LBSN benchmark data that closely mimics the real-world. As such, it allows us to capture 100% of the (simulated) population without any data uncertainty, privacy-related concerns, or incompleteness. It allows researchers to see the (simulated) world through the lens of an omniscient entity having perfect data. Our framework is made available to the community. In addition, we provide a series of simulated benchmark LBSN data sets using different synthetic towns and real-world urban environments obtained from OpenStreetMap. The simulation software and data sets, which comprise gigabytes of spatio-temporal and temporal social network data, are made available to the research community.
more »
« less
Simulating Urban Patterns of Life: A Geo-Social Data Generation Framework
Data generators have been heavily used in creating massive trajectory datasets to address common challenges of real-world datasets, including privacy, cost of data collection, and data quality. However, such generators often overlook social and physiological characteristics of individuals and as such their results are often limited to simple movement patterns. To address these shortcomings, we propose an agent-based simulation framework that facilitates the development of behavioral models in which agents correspond to individuals that act based on personal preferences, goals, and needs within a realistic geographical environment. Researchers can use a drag-and-drop interface to design and control their own world including the geospatial and social (i.e. geo-social) properties. The framework is capable of generating and streaming very large data that captures the basic patterns of life in urban areas. Streaming data from the simulation can be accessed in real time through a dedicated API.
more »
« less
- PAR ID:
- 10187146
- Date Published:
- Journal Name:
- Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
- Page Range / eLocation ID:
- 576 to 579
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Location-based social networks (LBSNs) have been studied extensively in recent years. However, utilizing real-world LBSN datasets in such studies has severe weaknesses: sparse and small datasets, privacy concerns, and a lack of authoritative ground-truth. Our vision is to create a large scale geo-simulation framework to simulate human behavior and to create synthetic but realistic LBSN data that captures the location of users over time as well as social interactions of users in a social network. While existing LBSN datasets are trivially small, such a framework would provide the first source of massive LBSN benchmark data which would closely mimic the real world, containing high-fidelity information of location, and social connections of millions of simulated agents over several years of simulated time. Therefore, it would serve the research community by revitalizing and reshaping research on LBSNs by allowing researchers to see the (simulated) world through the lens of an omniscient entity having perfect data. These evaluations will guide future research enabling us to develop solutions to improve LBSN applications such as user-location recommendation, friend recommendation, location prediction, and location privacy.more » « less
-
Large-scale driving datasets such as Waymo Open Dataset and nuScenes substantially accelerate autonomous driving research, especially for perception tasks such as 3D detection and trajectory forecasting. Since the driving logs in these datasets contain HD maps and detailed object annotations that accurately reflect the real- world complexity of traffic behaviors, we can harvest a massive number of complex traffic scenarios and recreate their digital twins in simulation. Compared to the hand- crafted scenarios often used in existing simulators, data-driven scenarios collected from the real world can facilitate many research opportunities in machine learning and autonomous driving. In this work, we present ScenarioNet, an open-source platform for large-scale traffic scenario modeling and simulation. ScenarioNet defines a unified scenario description format and collects a large-scale repository of real-world traffic scenarios from the heterogeneous data in various driving datasets including Waymo, nuScenes, Lyft L5, Argoverse, and nuPlan datasets. These scenarios can be further replayed and interacted with in multiple views from Bird- Eye-View layout to realistic 3D rendering in MetaDrive simulator. This provides a benchmark for evaluating the safety of autonomous driving stacks in simulation before their real-world deployment. We further demonstrate the strengths of ScenarioNet on large-scale scenario generation, imitation learning, and reinforcement learning in both single-agent and multi-agent settings. Code, demo videos, and website are available at https://metadriverse.github.io/scenarionet.more » « less
-
Stream clustering is an important data mining technique to capture the evolving patterns in real-time data streams. Today’s data streams, e.g., IoT events and Web clicks, are usually high-speed and contain dynamically-changing patterns. Existing stream clustering algorithms usually follow an online-offline paradigm with a one-record-at-a-time update model, which was designed for running in a single machine. These stream clustering algorithms, with this sequential update model, cannot be efficiently parallelized and fail to deliver the required high throughput for stream clustering. In this paper, we present DistStream, a distributed framework that can effectively scale out online-offline stream clustering algorithms. To parallelize these algorithms for high throughput, we develop a mini-batch update model with efficient parallelization approaches. To maintain high clustering quality, DistStream’s mini-batch update model preserves the update order in all the computation steps during parallel execution, which can reflect the recent changes for dynamically-changing streaming data. We implement DistStream atop Spark Streaming, as well as four representative stream clustering algorithms based on DistStream. Our evaluation on three real-world datasets shows that DistStream-based stream clustering algorithms can achieve sublinear throughput gain and comparable (99%) clustering quality with their single-machine counterparts.more » « less
-
The unprecedented rise of social media platforms, combined with location-aware technologies, has led to continuously producing a significant amount of geo-social data that flows as a user-generated data stream. This data has been exploited in several important use cases in various application domains. This article supports geo-social personalized queries in streaming data environments. We define temporal geo-social queries that provide users with real-time personalized answers based on their social graph. The new queries allow incorporating keyword search to get personalized results that are relevant to certain topics. To efficiently support these queries, we propose an indexing framework that provides lightweight and effective real-time indexing to digest geo-social data in real time. The framework distinguishes highly dynamic data from relatively stable data and uses appropriate data structures and a storage tier for each. Based on this framework, we propose a novel geo-social index and adopt two baseline indexes to support the addressed queries. The query processor then employs different types of pruning to efficiently access the index content and provide a real-time query response. The extensive experimental evaluation based on real datasets has shown the superiority of our proposed techniques to index real-time data and provide low-latency queries compared to existing competitors.more » « less
An official website of the United States government

