skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Helping teachers make equitable decisions: effects of the TEC Rubric on teachers’ evaluations of a computing curriculum
Background and Context: Educators make consequential curricu- lar decisions, often with little support, particularly as it relates to equity and how to support all students. Objective: This paper investigates the use of a rubric to support educators evaluating computer science curricula, especially with regards to equity. Method: Seventeen in-service elementary teachers evaluated a computer science curriculum with and without the Teacher Accessibility, Equity, and Content (TEC) Rubric. We examine tea- chers’ responses to prompts and completed TEC Rubrics to under- stand if and how the rubric supported their evaluations. Findings: The TEC Rubric helped teachers attend not only to curri- cular factors related to instructional design but also to issues of equity and accessibility and to identify opportunities to draw on the cultural resources of students and their communities. Implications: We contribute evidence supporting curricular evalua- tion instruments, specifically the TEC Rubric, and their use to direct teachers’ attention to attributes of equitable computing instruction.  more » « less
Award ID(s):
1738758
PAR ID:
10187181
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Computer Science Education
ISSN:
0899-3408
Page Range / eLocation ID:
1 to 30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The College Board's AP Computer Science Principles (CSP) content has become a major new course for introducing K-12 students to the discipline. The course was designed for many reasons, but one major goal was to broaden participation. While significant work has been completed toward equity by many research groups, we know of no systematic analysis of CSP content created by major vendors in relation to accessibility for students with disabilities, especially those who are blind or visually impaired. In this experience report, we discuss two major actions by our team to make CSP more accessible. First, with the help of accessibility experts and teachers, we modified the entire Code.org CSP course to make it accessible. Second, we conducted a one-week professional development workshop in the summer of 2018 for teachers of blind or visually impaired students in order to help them prepare to teach CSP or support those who do. We report here on lessons learned that are useful to teachers who have blind or visually impaired students in their classes, to AP CSP curriculum providers, and to the College Board. 
    more » « less
  2. null (Ed.)
    A major goal of AP Computer Science Principles (CSP) is equity, that is, that all students should have the opportunity to learn computer science at a basic level. In this experience report, we explore how well the Code.org version of AP CSP meets the needs of Deaf students. We report on a professional development workshop for 14 teachers that teach at schools for the Deaf or in Deaf programs in mainstream schools. These schools and programs use the bilingual approach to teaching with instruction in American Sign Language (ASL) and other resources (e.g., textbooks, workbooks, videos, websites, computer apps, exams) in English. Synthesizing the experiences and advice of the teachers and workshop staff, we offer lessons learned for CS teachers in schools for the Deaf and Deaf programs in mainstream schools, mainstream CS teachers who may have one or a few Deaf students in their classes, and AP CSP content providers. Index Terms—Computer Science Principles, Deaf, English Language Learners, Bilingual, Professional Development 
    more » « less
  3. null (Ed.)
    A major goal of AP Computer Science Principles (CSP) is equity, that is, that all students should have the opportunity to learn computer science at a basic level. In this experience report, we explore how well the Code.org version of AP CSP meets the needs of Deaf students. We report on a professional development workshop for 14 teachers that teach at schools for the Deaf or in Deaf programs in mainstream schools. These schools and programs use the bilingual approach to teaching with instruction in American Sign Language (ASL) and other resources (e.g., textbooks, workbooks, videos, websites, computer apps, exams) in English. Synthesizing the experiences and advice of the teachers and workshop staff, we offer lessons learned for CS teachers in schools for the Deaf and Deaf programs in mainstream schools, mainstream CS teachers who may have one or a few Deaf students in their classes, and AP CSP content providers. Index Terms—Computer Science Principles, Deaf, English Language Learners, Bilingual, Professional Development 
    more » « less
  4. Despite the interest in equity, little research has considered students with disabilities in PreK-12 computer science education. The 2022 Computer Science Teachers Association and Kapor Center facilitated Landscape Survey of PreK-12 CS Teachers, which had over 2200 responses, gives us new insight. There were few significant differences between the experiences and perceptions of teachers with disabilities and those without. Accessibility was the least taught computing concept. Furthermore, teachers reported on a variety of barriers that students with disabilities encounter related to structural barriers, students choosing note to take CS, and teachers' perceptions of student ability. The findings point to the need for interventions related to resources, outreach, and policy. 
    more » « less
  5. null (Ed.)
    This study investigates how teachers verbally support students to engage in integrated engineering, science, and computer science activities across the implementation of an engineering project. This is important as recent research has focused on understanding how precollege students’ engagement in engineering practices is supported by teachers (Watkins et al., 2018) and the benefits of integrating engineering in precollege classes, including improved achievement in science, ability to engage in science and engineering practices inherent to engineering (i.e., engineering design), and increased awareness of engineering (National Academy of Engineering and the National Research Council; Katehi et al., 2009). Further, there is a national emphasis on integrating engineering, science, and computer science practices and concepts in science classrooms (NGSS Lead States, 2013). Yet little research has considered how teachers implement these disciplines together within one classroom, particularly elementary teachers who often have little prior experience in teaching engineering and may need support to integrate engineering design into elementary science classroom settings. In particular, this study explores how elementary teachers verbally support science and computer science concepts and practices to be implicitly and explicitly integrated into an engineering project by implementing support intended by curricular materials and/or adding their own verbal support. Implicit use of integration included students engaging in integrated practices without support to know that they were doing so; explicit use of integration included teachers providing support for students to know how and why they were integrating disciplines. Our research questions include: (1) To what extent did teachers provide implicit and explicit verbal support of integration in implementation versus how it was intended in curricular materials? (2) Does this look different between two differently-tracked class sections? Participants include two fifth-grade teachers who co-led two fifth-grade classes through a four-week engineering project. The project focused on redesigning school surfaces to mitigate water runoff. Teachers integrated disciplines by supporting students to create computational models of underlying scientific concepts to develop engineering solutions. One class had a larger proportion of students who were tracked into accelerated mathematics; the other class had a larger proportion of students with individualized educational plans (IEPs). Transcripts of whole class discussion were analyzed for instances that addressed the integration of disciplines or supported students to engage in integrated activities. Results show that all instances of integration were implicit for the class with students in advanced mathematics while most were explicit for the class with students with IEPs. Additionally, support was mainly added by the teachers rather than suggested by curricular materials. Most commonly, teachers added integration between computer science and engineering. Implications of this study are an important consideration for the support that teachers need to engage in the important, but challenging, work of integrating science and computer science practices through engineering lessons within elementary science classrooms. Particularly, we consider how to assist teachers with their verbal supports of integrated curricula through engineering lessons in elementary classrooms. This study then has the potential to significantly impact the state of knowledge in interdisciplinary learning through engineering for elementary students. 
    more » « less