When releasing data to the public, a vital concern is the risk of exposing personal information of the individuals who have contributed to the data set. Many mechanisms have been proposed to protect individual privacy, though less attention has been dedicated to practically conducting valid inferences on the altered privacy-protected data sets. For frequency tables, the privacy-protection-oriented perturbations often lead to negative cell counts. Releasing such tables can undermine users’ confidence in the usefulness of such data sets. This paper focuses on releasing one-way frequency tables. We recommend an optimal mechanism that satisfies ϵ-differential privacy (DP) without suffering from havingmore »
Statistical Properties of Sanitized Results from Differentially Private Laplace Mechanism with Univariate Bounding Constraints
Protection of individual privacy is a common concern when releasing and sharing data and information. Differential privacy (DP) formalizes privacy in probabilistic terms without making assumptions about the background knowledge of data intruders, and thus provides a robust concept for privacy protection. Practical applications of DP involve development of differentially private mechanisms to generate sanitized results at a pre-specified privacy budget. For the sanitization of statistics with publicly known bounds such as proportions and correlation coefficients, the bounding constraints will need to be incorporated in the differentially private mechanisms. There has been little work on examining the consequences of the bounding constraints on the accuracy of sanitized results and the statistical inferences of the population parameters based on the sanitized results. In this paper, we formalize the differentially private truncated and boundary inflated truncated (BIT) procedures for releasing statistics with publicly known bounding constraints. The impacts of the truncated and BIT Laplace procedures on the statistical accuracy and validity of sanitized statistics are evaluated both theoretically and empirically via simulation studies.
- Publication Date:
- NSF-PAR ID:
- 10187226
- Journal Name:
- Transactions on data privacy
- Volume:
- 12
- Issue:
- 3
- Page Range or eLocation-ID:
- 169-195
- ISSN:
- 1888-5063
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Organizations often collect private data and release aggregate statistics for the public’s benefit. If no steps toward preserving privacy are taken, adversaries may use released statistics to deduce unauthorized information about the individuals described in the private dataset. Differentially private algorithms address this challenge by slightly perturbing underlying statistics with noise, thereby mathematically limiting the amount of information that may be deduced from each data release. Properly calibrating these algorithms—and in turn the disclosure risk for people described in the dataset—requires a data curator to choose a value for a privacy budget parameter, ɛ . However, there is littlemore »
-
Differential Privacy (DP) formalizes privacy in mathematical terms and provides a robust concept for privacy protection. DIfferentially Private Data Synthesis (DIPS) techniques produce and release synthetic individual-level data in the DP framework. One key challenge to develop DIPS methods is the preservation of the statistical utility of synthetic data, especially in high-dimensional settings. We propose a new DIPS approach, STatistical Election to Partition Sequentially (STEPS) that partitions data by attributes according to their importance ranks according to either a practical or statistical importance measure. STEPS aims to achieve better original information preservation for the attributes with higher importance ranks andmore »
-
We present three new algorithms for constructing differentially private synthetic data—a sanitized version of a sensitive dataset that approximately preserves the answers to a large collection of statistical queries. All three algorithms are \emph{oracle-efficient} in the sense that they are computationally efficient when given access to an optimization oracle. Such an oracle can be implemented using many existing (non-private) optimization tools such as sophisticated integer program solvers. While the accuracy of the synthetic data is contingent on the oracle’s optimization performance, the algorithms satisfy differential privacy even in the worst case. For all three algorithms, we provide theoretical guarantees formore »
-
A large amount of data is often needed to train machine learning algorithms with confidence. One way to achieve the necessary data volume is to share and combine data from multiple parties. On the other hand, how to protect sensitive personal information during data sharing is always a challenge. We focus on data sharing when parties have overlapping attributes but non-overlapping individuals. One approach to achieve privacy protection is through sharing differentially private synthetic data. Each party generates synthetic data at its own preferred privacy budget, which is then released and horizontally merged across the parties. The total privacy costmore »