skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Simple and Practical Method for Reducing the Disparate Impact of Differential Privacy
Differentially private (DP) mechanisms have been deployed in a variety of high-impact social settings (perhaps most notably by the U.S. Census). Since all DP mechanisms involve adding noise to results of statistical queries, they are expected to impact our ability to accurately analyze and learn from data, in effect trading off privacy with utility. Alarmingly, the impact of DP on utility can vary significantly among different sub-populations. A simple way to reduce this disparity is with stratification. First compute an independent private estimate for each group in the data set (which may be the intersection of several protected classes), then, to compute estimates of global statistics, appropriately recombine these group estimates. Our main observation is that naive stratification often yields high-accuracy estimates of population-level statistics, without the need for additional privacy budget. We support this observation theoretically and empirically. Our theoretical results center on the private mean estimation problem, while our empirical results center on extensive experiments on private data synthesis to demonstrate the effectiveness of stratification on a variety of private mechanisms. Overall, we argue that this straightforward approach provides a strong baseline against which future work on reducing utility disparities of DP mechanisms should be compared.  more » « less
Award ID(s):
1916505 2312930 1922658 2045590
PAR ID:
10514464
Author(s) / Creator(s):
; ;
Publisher / Repository:
AAAI.org
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
38
Issue:
19
ISSN:
2159-5399
Page Range / eLocation ID:
21554 to 21562
Subject(s) / Keyword(s):
differential privacy algorithmic fairness synthetic data
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent data search platforms use ML task-based utility measures rather than metadata-based keywords, to search large dataset corpora. Requesters submit a training dataset, and these platforms search foraugmentations---join or union-compatible datasets---that, when used to augment the requester's dataset, most improve model (e.g., linear regression) performance. Although effective, providers that manage personally identifiable data demand differential privacy (DP) guarantees before granting these platforms data access. Unfortunately, making data search differentially private is nontrivial, as a single search can involve training and evaluating datasets hundreds or thousands of times, quickly depleting privacy budgets. We presentSaibot, a differentially private data search platform that employs Factorized Privacy Mechanism (FPM), a novel DP mechanism, to calculate sufficient semi-ring statistics for ML over different combinations of datasets. These statistics are privatized once, and can be freely reused for the search. This allows Saibot to scale to arbitrary numbers of datasets and requests, while minimizing the amount that DP noise affects search results. We optimize the sensitivity of FPM for common augmentation operations, and analyze its properties with respect to linear regression. Specifically, we develop an unbiased estimator for many-to-many joins, prove its bounds, and develop an optimization to redistribute DP noise to minimize the impact on the model. Our evaluation on a real-world dataset corpus of 329 datasets demonstrates thatSaibotcan return augmentations that achieve model accuracy within 50--90% of non-private search, while the leading alternative DP mechanisms (TPM, APM, shuffling) are several orders of magnitude worse. 
    more » « less
  2. Abstract Organizations often collect private data and release aggregate statistics for the public’s benefit. If no steps toward preserving privacy are taken, adversaries may use released statistics to deduce unauthorized information about the individuals described in the private dataset. Differentially private algorithms address this challenge by slightly perturbing underlying statistics with noise, thereby mathematically limiting the amount of information that may be deduced from each data release. Properly calibrating these algorithms—and in turn the disclosure risk for people described in the dataset—requires a data curator to choose a value for a privacy budget parameter, ɛ . However, there is little formal guidance for choosing ɛ , a task that requires reasoning about the probabilistic privacy–utility tradeoff. Furthermore, choosing ɛ in the context of statistical inference requires reasoning about accuracy trade-offs in the presence of both measurement error and differential privacy (DP) noise. We present Vi sualizing P rivacy (ViP), an interactive interface that visualizes relationships between ɛ , accuracy, and disclosure risk to support setting and splitting ɛ among queries. As a user adjusts ɛ , ViP dynamically updates visualizations depicting expected accuracy and risk. ViP also has an inference setting, allowing a user to reason about the impact of DP noise on statistical inferences. Finally, we present results of a study where 16 research practitioners with little to no DP background completed a set of tasks related to setting ɛ using both ViP and a control. We find that ViP helps participants more correctly answer questions related to judging the probability of where a DP-noised release is likely to fall and comparing between DP-noised and non-private confidence intervals. 
    more » « less
  3. Protection of individual privacy is a common concern when releasing and sharing data and information. Differential privacy (DP) formalizes privacy in probabilistic terms without making assumptions about the background knowledge of data intruders, and thus provides a robust concept for privacy protection. Practical applications of DP involve development of differentially private mechanisms to generate sanitized results at a pre-specified privacy budget. For the sanitization of statistics with publicly known bounds such as proportions and correlation coefficients, the bounding constraints will need to be incorporated in the differentially private mechanisms. There has been little work on examining the consequences of the bounding constraints on the accuracy of sanitized results and the statistical inferences of the population parameters based on the sanitized results. In this paper, we formalize the differentially private truncated and boundary inflated truncated (BIT) procedures for releasing statistics with publicly known bounding constraints. The impacts of the truncated and BIT Laplace procedures on the statistical accuracy and validity of sanitized statistics are evaluated both theoretically and empirically via simulation studies. 
    more » « less
  4. Differentially Private Federated Learning (DP-FL) has garnered attention as a collaborative machine learning approach that ensures formal privacy. Most DP-FL approaches ensure DP at the record-level within each silo for cross-silo FL. However, a single user's data may extend across multiple silos, and the desired user-level DP guarantee for such a setting remains unknown. In this study, we present Uldp-FL, a novel FL framework designed to guarantee user-level DP in cross-silo FL where a single user's data may belong to multiple silos. Our proposed algorithm directly ensures user-level DP through per-user weighted clipping, departing from group-privacy approaches. We provide a theoretical analysis of the algorithm's privacy and utility. Additionally, we improve the utility of the proposed algorithm with an enhanced weighting strategy based on user record distribution and design a novel private protocol that ensures no additional information is revealed to the silos and the server. Experiments on real-world datasets show substantial improvements in our methods in privacy-utility trade-offs under user-level DP compared to baseline methods. To the best of our knowledge, our work is the first FL framework that effectively provides user-level DP in the general cross-silo FL setting. 
    more » « less
  5. Text data has become extremely valuable due to the emergence of machine learning algorithms that learn from it. A lot of high-quality text data generated in the real world is private and therefore cannot be shared or used freely due to privacy concerns. Generating synthetic replicas of private text data with a formal privacy guarantee, i.e., differential privacy (DP), offers a promising and scalable solution. However, existing methods necessitate DP finetuning of large language models (LLMs) on private data to generate DP synthetic data. This approach is not viable for proprietary LLMs (e.g., GPT-3.5) and also demands considerable computational resources for open-source LLMs. Lin et al. (2024) recently introduced the Private Evolution (PE) algorithm to generate DP synthetic images with only API access to diffusion models. In this work, we propose an augmented PE algorithm, named AUGPE, that applies to the complex setting of text. We use API access to an LLM and generate DP synthetic text without any model training. We conduct comprehensive experiments on three benchmark datasets. Our results demonstrate that AUGPE produces DP synthetic text that yields competitive utility with the SOTA DP finetuning baselines. This underscores the feasibility of relying solely on API access of LLMs to produce high-quality DP synthetic texts, thereby facilitating more accessible routes to privacy-preserving LLM applications. Our code and data are available at https://github.com/AI-secure/aug-pe. 
    more » « less