Recent data search platforms use ML task-based utility measures rather than metadata-based keywords, to search large dataset corpora. Requesters submit a training dataset, and these platforms search for
We present
This content will become publicly available on March 25, 2025
Recent data search platforms use ML task-based utility measures rather than metadata-based keywords, to search large dataset corpora. Requesters submit a training dataset, and these platforms search for
We present
Differentially Private Federated Learning (DP-FL) has garnered attention as a collaborative machine learning approach that ensures formal privacy. Most DP-FL approaches ensure DP at the record-level within each silo for cross-silo FL. However, a single user's data may extend across multiple silos, and the desired user-level DP guarantee for such a setting remains unknown. In this study, we present Uldp-FL, a novel FL framework designed to guarantee user-level DP in cross-silo FL where a single user's data may belong to multiple silos. Our proposed algorithm directly ensures user-level DP through per-user weighted clipping, departing from group-privacy approaches. We provide a theoretical analysis of the algorithm's privacy and utility. Additionally, we improve the utility of the proposed algorithm with an enhanced weighting strategy based on user record distribution and design a novel private protocol that ensures no additional information is revealed to the silos and the server. Experiments on real-world datasets show substantial improvements in our methods in privacy-utility trade-offs under user-level DP compared to baseline methods. To the best of our knowledge, our work is the first FL framework that effectively provides user-level DP in the general cross-silo FL setting.
Differential privacy (DP) data synthesizers are increasingly proposed to afford public release of sensitive information, offering theoretical guarantees for privacy (and, in some cases, utility), but limited empirical evidence of utility in practical settings. Utility is typically measured as the error on representative proxy tasks, such as descriptive statistics, multivariate correlations, the accuracy of trained classifiers, or performance over a query workload. The ability for these results to generalize to practitioners' experience has been questioned in a number of settings, including the U.S. Census. In this paper, we propose an evaluation methodology for synthetic data that avoids assumptions about the representativeness of proxy tasks, instead measuring the likelihood that published conclusions would change had the authors used synthetic data, a condition we call epistemic parity. Our methodology consists of reproducing empirical conclusions of peer-reviewed papers on real, publicly available data, then re-running these experiments a second time on DP synthetic data and comparing the results.
We instantiate our methodology over a benchmark of recent peer-reviewed papers that analyze public datasets in the ICPSR social science repository. We model quantitative claims computationally to automate the experimental workflow, and model qualitative claims by reproducing visualizations and comparing the results manually. We then generate DP synthetic datasets using multiple state-of-the-art mechanisms, and estimate the likelihood that these conclusions will hold. We find that, for reasonable privacy regimes, state-of-the-art DP synthesizers are able to achieve high epistemic parity for several papers in our benchmark. However, some papers, and particularly some specific findings, are difficult to reproduce for any of the synthesizers. Given these results, we advocate for a new class of mechanisms that can reorder the priorities for DP data synthesis: favor stronger guarantees for utility (as measured by epistemic parity) and offer privacy protection with a focus on application-specific threat models and risk-assessment.