skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Invasive grasses increase fire occurrence and frequency across US ecoregions
Fire-prone invasive grasses create novel ecosystem threats by increasing fine-fuel loads and continuity, which can alter fire regimes. While the existence of an invasive grass-fire cycle is well known, evidence of altered fire regimes is typically based on local-scale studies or expert knowledge. Here, we quantify the effects of 12 nonnative, invasive grasses on fire occurrence, size, and frequency across 29 US ecoregions encompassing more than one third of the conterminous United States. These 12 grass species promote fire locally and have extensive spatial records of abundant infestations. We combined agency and satellite fire data with records of abundant grass invasion to test for differences in fire regimes between invaded and nearby “uninvaded” habitat. Additionally, we assessed whether invasive grass presence is a significant predictor of altered fire by modeling fire occurrence, size, and frequency as a function of grass invasion, in addition to anthropogenic and ecological covariates relevant to fire. Eight species showed significantly higher fire-occurrence rates, which more than tripled for Schismus barbatus and Pennisetum ciliare. Six species demonstrated significantly higher mean fire frequency, which more than doubled for Neyraudia reynaudiana and Pennisetum ciliare . Grass invasion was significant in fire occurrence and frequency models, but not in fire-size models. The significant differences in fire regimes, coupled with the importance of grass invasion in modeling these differences, suggest that invasive grasses alter US fire regimes at regional scales. As concern about US wildfires grows, accounting for fire-promoting invasive grasses will be imperative for effectively managing ecosystems.  more » « less
Award ID(s):
1740267
PAR ID:
10187234
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
47
ISSN:
0027-8424
Page Range / eLocation ID:
23594 to 23599
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Fire exclusion and mismanaged grazing are globally important drivers of environmental change in mesic C4grasslands and savannas. Although interest is growing in prescribed fire for grassland restoration, we have little long‐term experimental evidence of the influence of burn season on the recovery of herbaceous plant communities, encroachment by trees and shrubs, and invasion by exotic grasses. We conducted a prescribed fire experiment (seven burns between 2001 and 2019) in historically fire‐excluded and overgrazed grasslands of central Texas. Sites were assigned to one of four experimental treatments: summer burns (warm season, lightning season), fall burns (early cool season), winter burns (late cool season), or unburned (fire exclusion). To assess restoration outcomes of the experiment, in 2019, we identified old‐growth grasslands to serve as reference sites. Herbaceous‐layer plant communities in all experimental sites were compositionally and functionally distinct from old‐growth grasslands, with little recovery of perennial C4grasses and long‐lived forbs. Unburned sites were characterized by several species of tree, shrub, and vine; summer sites were characterized by certain C3grasses and forbs; and fall and winter sites were intermediate in composition to the unburned and summer sites. Despite compositional differences, all treatments had comparable plot‐level plant species richness (range 89–95 species/1000 m2). At the local‐scale, summer sites (23 species/m2) and old‐growth grasslands (20 species/m2) supported greater richness than unburned sites (15 species/m2), but did not differ significantly from fall or winter sites. Among fire treatments, summer and winter burns most consistently produced the vegetation structure of old‐growth grasslands (e.g., mean woody canopy cover of 9%). But whereas winter burns promoted the invasive grassBothriochloa ischaemumby maintaining areas with low canopy cover, summer burns simultaneously limited woody encroachment and controlledB. ischaemuminvasion. Our results support a growing body of literature that shows that prescribed fire alone, without the introduction of plant propagules, cannot necessarily restore old‐growth grassland community composition. Nonetheless, this long‐term experiment demonstrates that prescribed burns implemented in the summer can benefit restoration by preventing woody encroachment while also controlling an invasive grass. We suggest that fire season deserves greater attention in grassland restoration planning and ecological research. 
    more » « less
  2. Understanding the indirect and interactive effects of environmental stressors is critical to planning conservation interventions, but such effects are poorly understood. For example, invasive species may modify fire effects by altering fire intensity or frequency, increasing or decreasing their abundance in response to fire, and/or changing the trajectory of post‐fire recovery. Without a clear understanding of the direct, indirect, and interactive effects of prescribed fire and invasive species on native plants, managers cannot design effective conservation measures and risk exacerbating invasion through fire or wasting resources on approaches that do not yield desired results. In this study, researchers worked directly with the manager of a wet meadow in southern Idaho to explore how prescribed fire would directly and indirectly impact an iconic native herb (Camassia quamash) in areas invaded by a perennial pasture grass (Alopecurus arundinaceus). We found that spring prescribed fire increased the abundance of invasiveA. arundinaceus, which indirectly strengthened its suppression ofC. quamashgrowth and reproduction. In contrast, fire reversed the negative influence ofA. arundinaceusonC. quamashsurvival. Survival rates ofC. quamashwere higher after fire in areas with greater invasive grass abundance. This study points to the importance of understanding the indirect and interactive effects of prescribed fire and invasives on native plants across their life cycle for restoration projects and suggests fire, at least in spring, is not an appropriate management strategy for reducingA. arundinaceusinvasion at this site. 
    more » « less
  3. Gomory, Dusan (Ed.)
    The expansion of woody plants into grasslands and old fields is often ascribed to fire suppression and heavy grazing, especially by domestic livestock. However, it is also recognized that nutrient availability and interspecific competition with grasses and other woody plants play a role in certain habitats. I examined potential factors causing range- and niche expansion by the eastern redcedar Juniperus virginiana , the most widespread conifer in the eastern United States, in multifactorial experiments in a greenhouse. Historical records suggest that the eastern redcedar is a pioneer forest species, and may be replaced as the forest increases in tree density due to shading. Another possible factor that affects its distribution may be nutrient availability, which is higher in old fields and other disturbed lands than in undisturbed habitats. In its historic range, eastern redcedars are particularly abundant on limestone outcrops, often termed ‘cedar barrens’. However, the higher abundance on limestone could be due to reduced interspecific competition rather than a preference for high pH substrates. I manipulated shade, fertilization, lime, and interspecific competition with a common dominant tree, the post oak Quercus stellata . In a separate experiment, I manipulated fire and grass competition. I measured growth rates (height and diameter) and above- and belowground biomass at the end of both experiments. I also measured total non-structural carbohydrates and nitrogen in these plants. Shade was the most important factor limiting the growth rates and biomass of eastern redcedars. I also found that there were significant declines in nitrogen and non-structural carbohydrates when shaded. These results are consistent with the notion that the eastern redcedar is a pioneer forest species, and that shade is the reason that these redcedars are replaced by other tree species. In the second experiment, I found that a single fire had a negative effect on young trees. There was no significant effect of competition with grass, perhaps because the competitive effect was shading by grasses and not nutrient depletion. Overall, the effects of shade were far more apparent than the effects of fire. 
    more » « less
  4. Abstract A key challenge in ecology is understanding how multiple drivers interact to precipitate persistent vegetation state changes. These state changes may be both precipitated and maintained by disturbances, but predicting whether the state change will be fleeting or persistent requires an understanding of the mechanisms by which disturbance affects the alternative communities. In the sagebrush shrublands of the western United States, widespread annual grass invasion has increased fuel connectivity, which increases the size and spatial contiguity of fires, leading to postfire monocultures of introduced annual grasses (IAG). The novel grassland state can be persistent and is more likely to promote large fires than the shrubland it replaced. But the mechanisms by which prefire invasion and fire occurrence are linked to higher postfire flammability are not fully understood. A natural experiment to explore these interactions presented itself when we arrived in northern Nevada immediately after a 50,000 ha wildfire was extinguished. We hypothesized that the novel grassland state is maintained via a reinforcing feedback where higher fuel connectivity increases burn severity, which subsequently increases postfire IAG dispersal, seed survivorship, and fuel connectivity. We used a Bayesian joint species distribution model and structural equation model framework to assess the strength of the support for each element in this feedback pathway. We found that prefire fuel connectivity increased burn severity and that higher burn severity had mostly positive effects on the occurrence of IAG and another nonnative species and mostly negative or neutral relationships with all other species. Finally, we found that the abundance of IAG seeds in the seed bank immediately after a fire had a positive effect on the fuel connectivity 3 years after the fire, completing a positive feedback promoting IAG. These results demonstrate that the strength of the positive feedback is controlled by measurable characteristics of ecosystem structure, composition, and disturbance. Further, each node in the loop is affected independently by multiple global change drivers. It is possible that these characteristics can be modeled to predict threshold behavior and inform management actions to mitigate or slow the establishment of the grass–fire cycle, perhaps via targeted restoration applications or prefire fuel treatments. 
    more » « less
  5. In the southwestern United States, non-native grass invasions have increased wildfire occurrence in deserts and the likelihood of fire spread to and from other biomes with disparate fire regimes. The elevational transition between desertscrub and montane grasslands, woodlands, and forests generally occurs at ∼1,200 masl and has experienced fast suburbanization and an expanding wildland-urban interface (WUI). In summer 2020, the Bighorn Fire in the Santa Catalina Mountains burned 486 km 2 and prompted alerts and evacuations along a 40-km stretch of WUI below 1,200 masl on the outskirts of Tucson, Arizona, a metropolitan area of >1M people. To better understand the changing nature of the WUI here and elsewhere in the region, we took a multidimensional and timely approach to assess fire dynamics along the Desertscrub-Semi-desert Grassland ecotone in the Catalina foothills, which is in various stages of non-native grass invasion. The Bighorn Fire was principally a forest fire driven by a long-history of fire suppression, accumulation of fine fuels following a wet winter and spring, and two decades of hotter droughts, culminating in the hottest and second driest summer in the 125-yr Tucson weather record. Saguaro ( Carnegia gigantea ), a giant columnar cactus, experienced high mortality. Resprouting by several desert shrub species may confer some post-fire resiliency in desertscrub. Buffelgrass and other non-native species played a minor role in carrying the fire due to the patchiness of infestation at the upper edge of the Desertscrub biome. Coupled state-and-transition fire-spread simulation models suggest a marked increase in both burned area and fire frequency if buffelgrass patches continue to expand and coalesce at the Desertscrub/Semi-desert Grassland interface. A survey of area residents six months after the fire showed awareness of buffelgrass was significantly higher among residents that were evacuated or lost recreation access, with higher awareness of fire risk, saguaro loss and declining property values, in that order. Sustained and timely efforts to document and assess fast-evolving fire connectivity due to grass invasions, and social awareness and perceptions, are needed to understand and motivate mitigation of an increasingly fire-prone future in the region. 
    more » « less