Submarine melting has been implicated in the accelerated retreat of marine‐terminating glaciers globally. Energetic ocean flows, such as subglacial discharge plumes, are known to enhance submarine melting in their immediate vicinity. Using observations and a large eddy simulation, we demonstrate that discharge plumes emit high‐frequency internal gravity waves that propagate along glacier termini and transfer energy to distant regions of the terminus. Our analysis of wave characteristics and their correlation with subglacial discharge forcing suggest that they derive their energy from turbulent motions within the discharge plume and its surface outflow. Accounting for the near‐terminus velocities associated with these waves increases predicted melt rates by up to 70%. This may help to explain known discrepancies between observed melt rates and theoretical predictions. Because the dynamical ingredients—a buoyant plume rising through a stratified ocean—are common to many tidewater glacier systems, such internal waves are likely to be widespread.
- Award ID(s):
- 1658079
- PAR ID:
- 10187682
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 895
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Sedimentary Signatures of Persistent Subglacial Meltwater Drainage From Thwaites Glacier, AntarcticaSubglacial meltwater drainage can enhance localized melting along grounding zones and beneath the ice shelves of marine-terminating glaciers. Efforts to constrain the evolution of subglacial hydrology and the resulting influence on ice stability in space and on decadal to millennial timescales are lacking. Here, we apply sedimentological, geochemical, and statistical methods to analyze sediment cores recovered offshore Thwaites Glacier, West Antarctica to reconstruct meltwater drainage activity through the pre-satellite era. We find evidence for a long-lived subglacial hydrologic system beneath Thwaites Glacier and indications that meltwater plumes are the primary mechanism of sedimentation seaward of the glacier today. Detailed core stratigraphy revealed through computed tomography scanning captures variability in drainage styles and suggests greater magnitudes of sediment-laden meltwater have been delivered to the ocean in recent centuries compared to the past several thousand years. Fundamental similarities between meltwater plume deposits offshore Thwaites Glacier and those described in association with other Antarctic glacial systems imply widespread and similar subglacial hydrologic processes that occur independently of subglacial geology. In the context of Holocene changes to the Thwaites Glacier margin, it is likely that subglacial drainage enhanced submarine melt along the grounding zone and amplified ice-shelf melt driven by oceanic processes, consistent with observations of other West Antarctic glaciers today. This study highlights the necessity of accounting for the influence of subglacial hydrology on grounding-zone and ice-shelf melt in projections of future behavior of the Thwaites Glacier ice margin and marine-based glaciers around the Antarctic continent.more » « less
-
Abstract Fjord circulation modulates the connection between marine‐terminating glaciers and the ocean currents offshore. These fjords exhibit both overturning and horizontal recirculations, which are driven by water mass transformation at the head of the fjord via subglacial discharge plumes and distributed meltwater plumes. However, little is known about how various fjord characteristics influence the interaction between 3D fjord circulation and glacial melt. In this study, high‐resolution numerical simulations of idealized glacial fjords demonstrate that recirculation strength controls melt, which feeds back on overturning and recirculation. The relationships between overturning, recirculation, and melt rate are well predicted by vorticity balance, reduced‐order melt parameterizations, and empirical scaling arguments. These theories allow us to take into account the near‐glacier horizontal velocities, which yield improved predictions of fjord overturning, recirculation, and glacial melt.
-
Abstract Flow separation has been observed and studied in sinuous laboratory channels and natural meanders, but the effects of flow separation on along‐channel drag are not well understood. Motivated by observations of large drag coefficients from a shallow, sinuous estuary, we built idealized numerical models representative of that system. We found that flow separation in tidal channels with curvature can create form drag that increases the total drag to more than twice that from bottom friction alone. In the momentum budget, the pressure gradient is balanced by the combined effects of bottom friction and form drag, which is calculated directly. The effective increase in total drag coefficient depends on two geometric parameters: dimensionless water depth and bend sharpness, quantified as the bend radius of curvature to channel width ratio. We introduce a theoretical boundary layer separation model to explain this parameter dependence and to predict flow separation and the increased drag. The drag coefficient can increase by a factor of 2–7 in “sharp” and “deep” sinuous channels where flow separation is most likely. Flow separation also enhances energy dissipation due to increased velocities in bends, resulting in greater loss of tidal energy and weakened stratification. Flow separation and the associated drag increase are expected to be more common in meanders of tidal channels than rivers where point bars that inhibit flow separation are more commonly found. The increased drag due to flow separation reduces tidal amplitude and affects velocity phasing along the estuary and could result in morphological feedbacks.
-
Abstract Marine-terminating glaciers lose mass through melting and iceberg calving, and we find that meltwater drainage systems influence calving timing at Helheim Glacier, a tidewater glacier in East Greenland. Meltwater feeds a buoyant subglacial discharge plume at the terminus of Helheim Glacier, which rises along the glacial front and surfaces through the mélange. Here, we use high-resolution satellite and time-lapse imagery to observe the surface expression of this meltwater plume and how plume timing and location compare with that of calving and supraglacial meltwater pooling from 2011 to 2019. The plume consistently appeared at the central terminus even as the glacier advanced and retreated, fed by a well-established channelized drainage system with connections to supraglacial water. All full-thickness calving episodes, both tabular and non-tabular, were separated from the surfacing plume by either time or by space. We hypothesize that variability in subglacial hydrology and basal coupling drive this inverse relationship between subglacial discharge plumes and full-thickness calving. Surfacing plumes likely indicate a low-pressure subglacial drainage system and grounded terminus, while full-thickness calving occurrence reflects a terminus at or close to flotation. Our records of plume appearance and full-thickness calving therefore represent proxies for the grounding state of Helheim Glacier through time.more » « less