Nanocrystalline and nanolaminated materials show enhanced radiation tolerance compared with their coarse-grained counterparts, since grain boundaries and layer interfaces act as effective defect sinks. Although the effects of layer interface and layer thickness on radiation tolerance of crystalline nanolaminates have been systematically studied, radiation response of crystalline/amorphous nanolaminates is rarely investigated. In this study, we show that irradiation can lead to formation of nanocrystals and nanotwins in amorphous CuNb layers in Cu/amorphous-CuNb nanolaminates. Substantial element segregation is observed in amorphous CuNb layers after irradiation. In Cu layers, both stationary and migrating grain boundaries effectively interact with defects. Furthermore, there is a clear size effect on irradiation-induced crystallization and grain coarsening. In situ studies also show that crystalline/amorphous interfaces can effectively absorb defects without drastic microstructural change, and defect absorption by grain boundary and crystalline/amorphous interface is compared and discussed. Our results show that tailoring layer thickness can enhance radiation tolerance of crystalline/amorphous nanolaminates and can provide insights for constructing crystalline/amorphous nanolaminates under radiation environment.
more »
« less
Dual Beam In Situ Radiation Studies of Nanocrystalline Cu
Nanocrystalline metals have shown enhanced radiation tolerance as grain boundaries serve as effective defect sinks for removing radiation-induced defects. However, the thermal and radiation stability of nanograins are of concerns since radiation may induce grain boundary migration and grain coarsening in nanocrystalline metals when the grain size falls in the range of several to tens of nanometers. In addition, prior in situ radiation studies on nanocrystalline metals have focused primarily on single heavy ion beam radiations, with little consideration of the helium effect on damage evolution. In this work, we utilized in situ single-beam (1 MeV Kr++) and dual-beam (1 MeV Kr++ and 12 keV He+) irradiations to investigate the influence of helium on the radiation response and grain coarsening in nanocrystalline Cu at 300 °C. The grain size, orientation, and individual grain boundary character were quantitatively examined before and after irradiations. Statistic results suggest that helium bubbles at grain boundaries and grain interiors may retard the grain coarsening. These findings provide new perspective on the radiation response of nanocrystalline metals.
more »
« less
- Award ID(s):
- 1728419
- PAR ID:
- 10187904
- Date Published:
- Journal Name:
- Materials
- Volume:
- 12
- Issue:
- 17
- ISSN:
- 1996-1944
- Page Range / eLocation ID:
- 2721
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A novel dislocation-density-based crystal plasticity model for nanocrystalline face-centered cubic metals is developed based on the thermally-activated mechanism of dislocations depinning from grain boundaries. Dislocations nucleated from grain boundary dislocation sources are assumed to be the primary carriers of plasticity in the nanocrystals. The evolution of the dislocation density thereby involves a competition between the nucleation of dislocations from grain boundary defect structures, such as ledges, and the absorption of dislocations into the grain boundary via diffusion processes. This model facilitates the simulation of plastic deformation in nanocrystalline metals, with consideration of the initial microstructure resulting from a particular processing method, to be computed as a direct result of dislocation-mediated plasticity only. The exclusion of grain boundary-mediated plasticity mechanisms in the formulation of the crystal plasticity model allows for the exploration of the fundamental role dislocations play in nanocrystalline plasticity. The combined effect of average grain size, grain size distribution shape, and initial dislocation density on the mechanical performance and strain-rate sensitivity are explored with the model. Further, the influence of the grain boundary diffusivity on post-yielding strain-hardening behavior is investigated to discern the impact that the choice of processing route has on the resulting deformation response of the material.more » « less
-
Advanced structural materials are expected to display significantly improved mechanical properties and this may be achieved, at least in part, by refining the grain size to the submicrometer or the nanocrystalline range. This report provides a detailed summary of the role of grain size in the mechanical properties of metals. The effect of grain size on the high temperature behavior and the development of superplasticity is illustrated using deformation mechanism maps and the development of exceptional strength through grain refinement hardening at low temperatures is also discussed. It is shown that the deformation mechanism of grain boundary sliding, as developed theoretically, can be used to effectively predict both the high and low temperature behavior of metals having different grain sizes. This analysis explains the increase in strain rate sensitivity in ultrafine-grained metals with low and moderate melting points and the ability to increase both the strength and ductility of these materials to thereby overcome the strength-ductility paradox. The recent development of hybrid materials is also reviewed and it is demonstrated that, although these hybrids have received only limited attention to date, they provide a potential for making significant advances in the production of new structural materials.more » « less
-
As an important type of functional material, nanocrystalline TiO2 with anatase phase has been used for solar energy conversion and photocatalysis. However, there have been only a few limited studies on the mechanical behaviors of nanocrystalline anatase. We performed a series of large-scale atomistic simulations to investigate the deformation of nanocrystalline anatase with mean grain sizes varying from 2 nm to 6 nm and amorphous TiO2 under uniaxial tension and compression at room temperature. The simulation results showed that for uniaxial tension, the fracture strains of simulated samples increase as the mean grain size decreases, and a superplastic deformation occurred in the nanocrystalline sample with a grain size of 2 nm. Such superplasticity of nanocrystalline anatase is attributed to the dominance of grain boundary sliding and nanoscale cavitation during deformation. The simulation results also showed that during uniaxial compression, the amorphization induced by high local compressive stress is the controlling plastic deformation mechanism, resulting in a good compressibility of nanocrystalline TiO2. During both tension and compression, nanocrystalline TiO2 exhibited good deformability, which is attributed to the fact that the grain boundaries with high volume fractions and disordered structures accommodated large plastic strains. Our present study provides a fundamental understanding of the plastic deformation of nanocrystalline anatase TiO2, as well as a route for enhancing the tensile and compressive deformability of nanostructured ceramics.more » « less
-
Near-rigid-body grain rotation is commonly observed during grain growth, recrystallization, and plastic deformation in nanocrystalline materials. Despite decades of research, the dominant mechanisms underlying grain rotation remain enigmatic. We present direct evidence that grain rotation occurs through the motion of disconnections (line defects with step and dislocation character) along grain boundaries in platinum thin films. State-of-the-art in situ four-dimensional scanning transmission electron microscopy (4D-STEM) observations reveal the statistical correlation between grain rotation and grain growth or shrinkage. This correlation arises from shear-coupled grain boundary migration, which occurs through the motion of disconnections, as demonstrated by in situ high-angle annular dark-field STEM observations and the atomistic simulation–aided analysis. These findings provide quantitative insights into the structural dynamics of nanocrystalline materials.more » « less
An official website of the United States government

