skip to main content


Title: Rainfall Runoff and Flood Simulations for Hurricane Impacts on Woonasquatucket River
Integrated hydrological and hydrodynamic modeling study has been conducted to investigate hurricane impact on Woonasquatucket River, Rhode Island, USA. Model simulation was conducted for the case study of 2010 storm event. The hydrological model simulates the runoff from the heavy rainstorm, while the river hydrodynamic model simulates the flood waves affected by the interactions of upstream rainfall runoff and downstream storm surge. Results indicate that the river floods was dominant by rainfall runoff in upper river reaches, but dominant by storm surge in the lower river area near the estuary  more » « less
Award ID(s):
1832068
PAR ID:
10188004
Author(s) / Creator(s):
Date Published:
Journal Name:
International journal of structural and civil engineering research
Volume:
9
Issue:
3
ISSN:
2319-6009
Page Range / eLocation ID:
pp. 239-244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Compound flooding, characterized by the co‐occurrence of multiple flood mechanisms, is a major threat to coastlines across the globe. Tropical cyclones (TCs) are responsible for many compound floods due to their storm surge and intense rainfall. Previous efforts to quantify compound flood hazard have typically adopted statistical approaches that may be unable to fully capture spatio‐temporal dynamics between rainfall‐runoff and storm surge, which ultimately impact total water levels. In contrast, we pose a physics‐driven approach that utilizes a large set of realistic TC events and a simplified physics‐based rainfall model and simulates each event within a hydrodynamic model framework. We apply our approach to investigate TC flooding in the Cape Fear River, NC. We find TC approach angle, forward speed, and intensity are relevant for compound flood potential, but rainfall rate and time lag between the centroid of rainfall and peak storm tide are the strongest predictors of compounding magnitude. Neglecting rainfall underestimates 100‐year flood depths across 28% of the floodplain, and taking the maximum of each hazard modeled separately still underestimates 16% of the floodplain. We find the main stem of the river is surge‐dominated, upstream portions of small streams and pluvial areas are rainfall dominated, but midstream portions of streams are compounding zones, and areas close to the coastline are surge dominated for lower return periods but compounding zones for high return periods (100 years). Our method links joint rainfall‐surge occurrence to actual flood impacts and demonstrates how compound flooding is distributed across coastal catchments.

     
    more » « less
  2. Abstract

    Tropical cyclone (TC) events are major drivers of compound flooding due to the interaction of wind‐driven storm surge and TC rainfall. Traditionally, coastal flood risk models have only taken into account surge flooding, even though it is known that the role of rainfall‐runoff is critical. There is limited understanding about the types of TC events that are capable of producing significant compounding and how site conditions at the coast affect the extent to which storm surge and rainfall‐runoff interact. This study investigates a suite of historical TCs making landfall near the Cape Fear River Estuary, NC, through a loosely coupled physical modeling methodology in order to draw conclusions about the spatial and temporal patterns of storm surge and rainfall that are able to induce significant compound impacts. Results indicate that intense outer rain bands falling over inland portions of the study area can be a driver of river‐surge compounding (increasing river levels by up to 0.36 m), while intense eyewall rainfall along the coast can result in localized compound impacts to coastal streams and tributaries if peak rainfall occurs near the time of peak storm tide. These localized compound impacts can result in defined interaction zones, where neither storm tide alone nor rainfall‐runoff alone can fully explain the observed maximum water levels. These results provide insight about the relative timing and spatial patterns of rainfall and storm surge that are capable of inducing compound flooding during TC events.

     
    more » « less
  3. Abstract

    Sea level rise and intense hurricane events make the East and Gulf Coasts of the United States increasingly vulnerable to flooding, which necessitates the development of computational models for accurate water level simulation in these areas to safeguard the coastal wellbeing. With this regard, a model framework for water level simulation over coastal transition zone during hurricane events is built in this study. The model takes advantage of the National Water Model’s strength in simulating rainfall–runoff process, and D‐Flow Flexible Mesh’s ability to support unstructured grid in hydrodynamic processes simulation with storm surges/tides information from the Advanced CIRCulation model. We apply the model on the Delaware Estuary to simulate extreme water level and to investigate the contribution of different physical components to it during Hurricane Isabel (2003). The model shows satisfactory performance with an average Willmott skill of 0.965. Model results suggest that storm surge is the most dominating component of extreme water level with an average contribution of 78.16%, second by the astronomical tide with 19.52%. While the contribution of rivers is mainly restricted to the upper part of the estuary upstream of Schuylkill River, local wind‐induced water level is more pronounced with values larger than 0.2 m over most part of the estuary.

     
    more » « less
  4. null (Ed.)
    Gated storm surge barriers are being studied by the United States Army Corps of Engineers (USACE) for coastal storm risk management for the New York City metropolitan area. Surge barrier gates are only closed when storm tides exceeding a specific “trigger” water level might occur in a storm. Gate closure frequency and duration both strongly influence the physical and environmental effects on enclosed estuaries. In this paper, we use historical observations to represent future storm tide hazard, and we superimpose local relative sea-level rise (SLR) to study the potential future changes to closure frequency and duration. We account for the effects of forecast uncertainty on closures, using a relationship between past storm surge and forecast uncertainty from an operational ensemble forecast system. A concern during a storm surge is that closed gates will trap river streamflow and could cause a new problem with trapped river water flooding. Similarly, we evaluate this possibility using historical data to represent river flood hazard, complemented by hydrodynamic model simulations to capture how waters rise when a hypothetical barrier is closed. The results show that SLR causes an exponential increase of the gate closure frequency, a lengthening of the closure duration, and a rising probability of trapped river water flooding. The USACE has proposed to prevent these SLR-driven increases by periodically raising the trigger water level (e.g., to match a prescribed storm return period). However, this alternative management approach for dealing with SLR requires waterfront seawalls to be raised at a high, and ongoing, additional future expense. For seawalls, costs and benefits will likely need to be weighed on a neighborhood-by-neighborhood basis, and in some cases retreat or other non-structural options may be preferable. 
    more » « less
  5. Abstract

    Tropical cyclones (TCs) are one of the greatest threats to coastal communities along the US Atlantic and Gulf coasts due to their extreme wind, rainfall and storm surge. Analyzing historical TC climatology and modeling TC hazards can provide valuable insight to planners and decision makers. However, detailed TC size information is typically only available from 1988 onward, preventing accurate wind, rainfall, and storm surge modeling for TCs occurring earlier in the historical record. To overcome temporally limited TC size data, we develop a database of size estimates that are based on reanalysis data and a physics‐based model. Specifically, we utilize ERA5 reanalysis data to estimate the TC outer size, and a physics‐based TC wind model to estimate the radius of maximum wind. We evaluate our TC size estimates using two high‐resolution wind data sets as well as Best Track information for a wide variety of TCs. Using the estimated size information plus the TC track and intensity, we reconstruct historical storm tides from 1950 to 2020 using a basin‐scale hydrodynamic model and show that our reconstructions agree well with observed peak storm tide and storm surge. Finally, we demonstrate that incorporating an expanded set of historical modeled storm tides beginning in 1950 can enhance our understanding of US coastal hazard. Our newly developed database of TC sizes and associated storm tides/surges can aid in understanding North Atlantic TC climatology and modeling TC wind, storm surge, and rainfall hazard along the US Atlantic and Gulf coasts.

     
    more » « less