skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rainfall Runoff and Flood Simulations for Hurricane Impacts on Woonasquatucket River
Integrated hydrological and hydrodynamic modeling study has been conducted to investigate hurricane impact on Woonasquatucket River, Rhode Island, USA. Model simulation was conducted for the case study of 2010 storm event. The hydrological model simulates the runoff from the heavy rainstorm, while the river hydrodynamic model simulates the flood waves affected by the interactions of upstream rainfall runoff and downstream storm surge. Results indicate that the river floods was dominant by rainfall runoff in upper river reaches, but dominant by storm surge in the lower river area near the estuary  more » « less
Award ID(s):
1832068
PAR ID:
10188004
Author(s) / Creator(s):
Date Published:
Journal Name:
International journal of structural and civil engineering research
Volume:
9
Issue:
3
ISSN:
2319-6009
Page Range / eLocation ID:
pp. 239-244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Compound flooding, characterized by the co‐occurrence of multiple flood mechanisms, is a major threat to coastlines across the globe. Tropical cyclones (TCs) are responsible for many compound floods due to their storm surge and intense rainfall. Previous efforts to quantify compound flood hazard have typically adopted statistical approaches that may be unable to fully capture spatio‐temporal dynamics between rainfall‐runoff and storm surge, which ultimately impact total water levels. In contrast, we pose a physics‐driven approach that utilizes a large set of realistic TC events and a simplified physics‐based rainfall model and simulates each event within a hydrodynamic model framework. We apply our approach to investigate TC flooding in the Cape Fear River, NC. We find TC approach angle, forward speed, and intensity are relevant for compound flood potential, but rainfall rate and time lag between the centroid of rainfall and peak storm tide are the strongest predictors of compounding magnitude. Neglecting rainfall underestimates 100‐year flood depths across 28% of the floodplain, and taking the maximum of each hazard modeled separately still underestimates 16% of the floodplain. We find the main stem of the river is surge‐dominated, upstream portions of small streams and pluvial areas are rainfall dominated, but midstream portions of streams are compounding zones, and areas close to the coastline are surge dominated for lower return periods but compounding zones for high return periods (100 years). Our method links joint rainfall‐surge occurrence to actual flood impacts and demonstrates how compound flooding is distributed across coastal catchments. 
    more » « less
  2. Abstract Flooding and salinization triggered by storm surges threaten the survival of coastal forests. After a storm surge event, soil salinity can increase by evapotranspiration or decrease by rainfall dilution. Here we used a 1D hydrological model to study the combined effect of evapotranspiration and rainfall on coastal vegetated areas. Our results shed light on tree root uptake and salinity infiltration feedback as a function of soil characteristics. As evaporation increases from 0 to 2.5 mm/day, soil salinity reaches 80 ppt in both sandy and clay loam soils in the first 5 cm of soil depth. Transpiration instead involves the root zone located in the first 40 cm of depth, affecting salinization in a complex way. In sandy loam soils, storm surge events homogeneously salinize the root zone, while in clay loam soils salinization is stratified, partially affecting tree roots. Soil salinity stratification combined with low permeability maintain root uptakes in clay loam soils 4/5‐time higher with respect to sandy loam ones. When cumulative rainfall is larger than potential evapotranspiration ETp(ETp/Rainfall ratios lower than 1), dilution promotes fast recovery to pre‐storm soil salinity conditions, especially in sandy loam soils. Field data collected after two storm surge events support the results obtained. Electrical conductivity (a proxy for salinity) increases when the ratio ETp/Rainfall is around 1.76, while recovery occurs when the ratio is around 0.92. In future climate change scenarios with higher temperatures and storm‐surge frequency, coastal vegetation will be compromised, because of soil salinity values much higher than tolerable thresholds. 
    more » « less
  3. Abstract Tropical cyclones (TCs) are one of the greatest threats to coastal communities along the US Atlantic and Gulf coasts due to their extreme wind, rainfall and storm surge. Analyzing historical TC climatology and modeling TC hazards can provide valuable insight to planners and decision makers. However, detailed TC size information is typically only available from 1988 onward, preventing accurate wind, rainfall, and storm surge modeling for TCs occurring earlier in the historical record. To overcome temporally limited TC size data, we develop a database of size estimates that are based on reanalysis data and a physics‐based model. Specifically, we utilize ERA5 reanalysis data to estimate the TC outer size, and a physics‐based TC wind model to estimate the radius of maximum wind. We evaluate our TC size estimates using two high‐resolution wind data sets as well as Best Track information for a wide variety of TCs. Using the estimated size information plus the TC track and intensity, we reconstruct historical storm tides from 1950 to 2020 using a basin‐scale hydrodynamic model and show that our reconstructions agree well with observed peak storm tide and storm surge. Finally, we demonstrate that incorporating an expanded set of historical modeled storm tides beginning in 1950 can enhance our understanding of US coastal hazard. Our newly developed database of TC sizes and associated storm tides/surges can aid in understanding North Atlantic TC climatology and modeling TC wind, storm surge, and rainfall hazard along the US Atlantic and Gulf coasts. 
    more » « less
  4. null (Ed.)
    Gated storm surge barriers are being studied by the United States Army Corps of Engineers (USACE) for coastal storm risk management for the New York City metropolitan area. Surge barrier gates are only closed when storm tides exceeding a specific “trigger” water level might occur in a storm. Gate closure frequency and duration both strongly influence the physical and environmental effects on enclosed estuaries. In this paper, we use historical observations to represent future storm tide hazard, and we superimpose local relative sea-level rise (SLR) to study the potential future changes to closure frequency and duration. We account for the effects of forecast uncertainty on closures, using a relationship between past storm surge and forecast uncertainty from an operational ensemble forecast system. A concern during a storm surge is that closed gates will trap river streamflow and could cause a new problem with trapped river water flooding. Similarly, we evaluate this possibility using historical data to represent river flood hazard, complemented by hydrodynamic model simulations to capture how waters rise when a hypothetical barrier is closed. The results show that SLR causes an exponential increase of the gate closure frequency, a lengthening of the closure duration, and a rising probability of trapped river water flooding. The USACE has proposed to prevent these SLR-driven increases by periodically raising the trigger water level (e.g., to match a prescribed storm return period). However, this alternative management approach for dealing with SLR requires waterfront seawalls to be raised at a high, and ongoing, additional future expense. For seawalls, costs and benefits will likely need to be weighed on a neighborhood-by-neighborhood basis, and in some cases retreat or other non-structural options may be preferable. 
    more » « less
  5. Abstract Storm surge has the potential to significantly increase suspended sediment flux to microtidal marshes. However, the overall effects of storm surge on microtidal marsh deposition have not been well quantified, with most modeling studies focusing on regular (astronomical) tidal flooding. Here we applied the Delft3D model to a microtidal bay‐marsh complex in Hog Bay, Virginia to quantify the contributions of storm surge to marsh deposition. We validated the model using spatially distributed hydrodynamic and suspended sediment data collected from the site and ran model simulations under different storm surge conditions with/without storm‐driven water level changes. Our results show that episodic storm surge events occurred 5% of the time at our study site, but contributed 40% of marsh deposition during 2009–2020. Our simulations illustrate that while wind‐driven waves control sediment resuspension on tidal flats, marsh deposition during storms was largely determined by tidal inundation associated with storm‐driven water levels. A moderate storm surge event can double sediment flux to most marshes around the bay and deliver more sediment to the marsh interior compared to simulations that include wind waves but not storm surge variations in water levels. Simulations of bay and marsh response to different storm surge events with varying magnitude of storm surge intensity reveal that total marsh deposition around the bay increased linearly with storm surge intensity, suggesting that future changes to storm magnitude and/or frequency would have significant implications for sediment supply to marshes at our study site. 
    more » « less