skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Tropical Cyclone Compound Flood Hazard Assessment: From Investigating Drivers to Quantifying Extreme Water Levels
Abstract Compound flooding, characterized by the co‐occurrence of multiple flood mechanisms, is a major threat to coastlines across the globe. Tropical cyclones (TCs) are responsible for many compound floods due to their storm surge and intense rainfall. Previous efforts to quantify compound flood hazard have typically adopted statistical approaches that may be unable to fully capture spatio‐temporal dynamics between rainfall‐runoff and storm surge, which ultimately impact total water levels. In contrast, we pose a physics‐driven approach that utilizes a large set of realistic TC events and a simplified physics‐based rainfall model and simulates each event within a hydrodynamic model framework. We apply our approach to investigate TC flooding in the Cape Fear River, NC. We find TC approach angle, forward speed, and intensity are relevant for compound flood potential, but rainfall rate and time lag between the centroid of rainfall and peak storm tide are the strongest predictors of compounding magnitude. Neglecting rainfall underestimates 100‐year flood depths across 28% of the floodplain, and taking the maximum of each hazard modeled separately still underestimates 16% of the floodplain. We find the main stem of the river is surge‐dominated, upstream portions of small streams and pluvial areas are rainfall dominated, but midstream portions of streams are compounding zones, and areas close to the coastline are surge dominated for lower return periods but compounding zones for high return periods (100 years). Our method links joint rainfall‐surge occurrence to actual flood impacts and demonstrates how compound flooding is distributed across coastal catchments.  more » « less
Award ID(s):
1854993
PAR ID:
10454705
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
8
Issue:
12
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Accurate delineation of compound flood hazard requires joint simulation of rainfall‐runoff and storm surges within high‐resolution flood models, which may be computationally expensive. There is a need for supplementing physical models with efficient, probabilistic methodologies for compound flood hazard assessment that can be applied under a range of climate and environment conditions. Here we propose an extension to the joint probability optimal sampling method (JPM‐OS), which has been widely used for storm surge assessment, and apply it for rainfall‐surge compound hazard assessment under climate change at the catchment‐scale. We utilize thousands of synthetic tropical cyclones (TCs) and physics‐based models to characterize storm surge and rainfall hazards at the coast. Then we implement a Bayesian quadrature optimization approach (JPM‐OS‐BQ) to select a small number (∼100) of storms, which are simulated within a high‐resolution flood model to characterize the compound flood hazard. We show that the limited JPM‐OS‐BQ simulations can capture historical flood return levels within 0.25 m compared to a high‐fidelity Monte Carlo approach. We find that the combined impact of 2100 sea‐level rise (SLR) and TC climatology changes on flood hazard change in the Cape Fear Estuary, NC will increase the 100‐year flood extent by 27% and increase inundation volume by 62%. Moreover, we show that probabilistic incorporation of SLR in the JPM‐OS‐BQ framework leads to different 100‐year flood maps compared to using a single mean SLR projection. Our framework can be applied to catchments across the United States Atlantic and Gulf coasts under a variety of climate and environment scenarios. 
    more » « less
  2. Abstract Coastal areas are subject to the joint risk associated with rainfall‐driven flooding and storm surge hazards. To capture this dependency and the compound nature of these hazards, bivariate modelling represents a straightforward and easy‐to‐implement approach that relies on observational records. Most existing applications focus on a single tide gauge–rain gauge/streamgauge combination, limiting the applicability of bivariate modelling to develop high‐resolution space–time design events that can be used to quantify the dynamic, that is, varying in space and time, compound flood hazard in coastal basins. Moreover, there is a need to recognize that not all extreme events always come from a single population, but can reflect a mixture of different generating mechanisms. Therefore, this paper describes an empirical approach to develop design storms with high‐resolution in space and time (i.e., ~5 km and hourly) for different joint annual exceedance probabilities. We also stratify extreme rainfall and storm surge events depending on whether they were caused by tropical cyclones (TCs) or not. We find that there are significant differences between the TC and non‐TC populations, with very different dependence structures that are missed if we treat all the events as coming from a single population. While we apply this methodology to one basin near Houston, Texas, our approach is general enough to make it applicable for any coastal basin exposed to compounding flood hazards from storm surge and rainfall‐induced flooding. 
    more » « less
  3. Abstract. In coastal regions, compound flooding can arise from a combination of different drivers such as storm surges, high tides, excess river discharge, and rainfall. Compound flood potential is often assessed by quantifying the dependence and joint probabilities of the flood drivers using multivariate models. However, most of these studies assume that all extreme events originate from a single population. This assumption may not be valid for regions where flooding can arise from different generation processes, e.g., tropical cyclones (TCs) and extratropical cyclones (ETCs). Here we present a flexible copula-based statistical framework to assess compound flood potential from multiple flood drivers while explicitly accounting for different storm types. The proposed framework is applied to Gloucester City, New Jersey, and St. Petersburg, Florida as case studies. Our results highlight the importance of characterizing the contributions from TCs and non-TCs separately to avoid potential underestimation of the compound flood potential. In both study regions, TCs modulate the tails of the joint distributions (events with higher return periods) while non-TC events have a strong effect on events with low to moderate joint return periods. We show that relying solely on TCs may be inadequate when estimating compound flood risk in coastal catchments that are also exposed to other storm types. We also assess the impact of non-classified storms that are neither linked to TCs or ETCs in the region (such as locally generated convective rainfall events and remotely forced storm surges). The presented study utilizes historical data and analyzes two populations, but the framework is flexible and can be extended to account for additional storm types (e.g., storms with certain tracks or other characteristics) or can be used with model output data including hindcasts or future projections. 
    more » « less
  4. null (Ed.)
    Compound flooding is a physical phenomenon that has become more destructive in recent years. Moreover, compound flooding is a broad term that envelops many different physical processes that can range from preconditioned, to multivariate, to temporally compounding, or spatially compounding. This research aims to analyze a specific case of compound flooding related to tropical cyclones where the compounding effect is on coastal flooding due to a combination of storm surge and river discharge. In recent years, such compound flood events have increased in frequency and magnitude, due to a number of factors such as sea-level rise from warming oceans. Therefore, the ability to model such events is of increasing urgency. At present, there is no holistic, integrated modeling system capable of simulating or forecasting compound flooding on a large regional or global scale, leading to the need to couple various existing models. More specifically, two more challenges in such a modeling effort are determining the primary model and accounting for the effect of adjacent watersheds that discharge to the same receiving water body in amplifying the impact of compound flooding from riverine discharge with storm surge when the scale of the model includes an entire coastal line. In this study, we investigated the possibility of using the Advanced Circulation (ADCIRC) model as the primary model to simulate the compounding effects of fluvial flooding and storm surge via loose one-way coupling with gage data through internal time-dependent flux boundary conditions. The performance of the ADCIRC model was compared with the Hydrologic Engineering Center- River Analysis System (HEC-RAS) model both at the watershed and global scales. Furthermore, the importance of including riverine discharges and the interactions among adjacent watersheds were quantified. Results showed that the ADCIRC model could reliably be used to model compound flooding on both a watershed scale and a regional scale. Moreover, accounting for the interaction of river discharge from multiple watersheds is critical in accurately predicting flood patterns when high amounts of riverine flow occur in conjunction with storm surge. Particularly, with storms such as Hurricane Harvey (2017), where river flows were near record levels, inundation patterns and water surface elevations were highly dependent on the incorporation of the discharge input from multiple watersheds. Such an effect caused extra and longer inundations in some areas during Hurricane Harvey. Comparisons with real gauge data show that adding internal flow boundary conditions into ADCIRC to account for river discharge from multiple watersheds significantly improves accuracy in predictions of water surface elevations during coastal flooding events. 
    more » « less
  5. Abstract Hydrologic connectivity controls the lateral exchange of water, solids, and solutes between rivers and floodplains, and is critical to ecosystem function, water treatment, flood attenuation, and geomorphic processes. This connectivity has been well‐studied, typically through the lens of fluvial flooding. In regions prone to heavy rainfall, the timing and magnitude of lateral exchange may be altered by pluvial flooding on the floodplain. We collected measurements of flow depth and velocity in the Trinity River floodplain in coastal Texas (USA) during Tropical Storm Imelda (2019), which produced up to 75 cm of rainfall locally. We developed a two‐dimensional hydrodynamic model at high resolution for a section of the Trinity River floodplain inspired by the compound flooding of Imelda. We then employed Lagrangian particle routing to quantify how residence times and particle velocities changed as flooding shifted from rainfall‐driven to river‐driven. Results show that heavy rainfall initiated lateral exchange before river discharge reached flood levels. The presence of rainwater also reduced floodplain storage, causing river water to be confined to a narrow corridor on the floodplain, while rainwater residence times were increased from the effect of high river flow. Finally, we analyzed the role of floodplain channels in facilitating surface‐water connectivity by varying model resolution in the floodplain. While the resolution of floodplain channels was important locally, it did not affect as much the overall floodplain behavior. This study demonstrates the complexity of floodplain hydrodynamics under conditions of heavy rainfall, with implications for sediment deposition and nutrient removal during floods. 
    more » « less