skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental Study of Forces Induced in Mechanical Excavation of Rock
This paper presents preliminary results of an experimental campaign aimed at mapping the dependence of the cutting force on the depth of cut in scratch tests performed with a sharp cutter. Tests conducted in Berea sandstone and Indiana limestone confirm that the scaling of the force with the depth of cut depends on the cutting regime. They also show a dependence of the nature of the frequency distribution of the cutting force on the modes of failure.  more » « less
Award ID(s):
1742823
PAR ID:
10188014
Author(s) / Creator(s):
Date Published:
Journal Name:
Geo-Congress 2020: Modeling, Geomaterials, and Site Characterization
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, the modified slip/fracture activation model has been used in order to understand the mechanism of ductile-brittle transition on the R-plane of sapphire during ultra-precision machining by reflecting direction of resultant force. Anisotropic characteristics of crack morphology and ductility of machining depending on cutting direction were explained in detail with modified fracture cleavage and plastic deformation parameters. Through the analysis, it was concluded that crack morphologies were mainly determined by the interaction of multiple fracture systems activated while, critical depth of cut was determined by the dominant plastic deformation parameter. In addition to this, by using proportionality relationship between magnitude of resultant force and depth of cut in the ductile region, an empirical model for critical depth of cut was developed. 
    more » « less
  2. The Japan Society for Precision Engineering (Ed.)
    Machining is in general conducted in multiple paths and thus residual stress and subsurface damage formed by previous cut may influence subsequent cutting. Ceramics materials are extremely brittle and prone to cracks. Ultra-precision machining with very small depth of cut enables ductile mode cutting. There have been various reports that critical depth of cut (CDC) for single crystal sapphire exists, where the ductile to brittle transition occurs. However, the CDC of subsequent cutting changes due to the influence of residual stress and subsurface damage by previous cut. This study investigates the indirect effect of residual stress and subsurface damage on the critical depth of cut of the second cut by analyzing the plastic deformation mechanisms activated during 2-step machining on A-plane of sapphire. It was found that the [1#100] machining orientation was most suitable since the critical depth of cut remained fairly constant due to dominant rhombohedral twinning activation during subsequent machining operations. 
    more » « less
  3. The rapid wear and premature failure of the cutting tool are prone to happen due to increased forces during machining difficult-to-cut materials such as Inconel 718. The application of alternative toolpath such as trochoidal milling has significantly improved tool life and reduced the overall cycle time of the process. The wear pattern of the tool has a direct impact on the cutting forces, which increases with tool deterioration. The cutting forces in milling are modeled through the mechanistic force model and can be designated through a set of force coefficients, i.e. cutting and edge representing the shearing and ploughing phenomenon of metal removal. It has been established in the literature that tool wear has a considerable effect on the value of edge force coefficients. This paper aims to determine the in-process edge force coefficients for the trochoidal toolpath and correlates them with the corresponding flank wear area. The proposed correlation will further assist in predicting the level of flank wear area based on the force values in trochoidal milling. 
    more » « less
  4. Abstract In recent years, semiconductors, electronics, optics, and various other industries have seen a significant surge in the use of sapphire materials, driven by their exceptional mechanical and chemical properties. The machining of sapphire surfaces plays a crucial role in all these applications. However, due to sapphires’ exceptionally high hardness (Mohs hardness of 9, Vickers hardness of 2300) and brittleness, machining them often presents challenges such as microcracking and chipping of the workpiece, as well as significant tool wear, making sapphires difficult to cut. To enhance the machining efficiency and machined surface integrity, ultrasonic vibration-assisted (UV-A) machining of sapphire has already been studied, showing improved performance with lower cutting force, better surface finish, and extended tool life. Scribing tests using a single-diamond tool not only are an effective method to understand the material removal mechanism and deformation characteristics during such UV-A machining processes but also can be used as a potential process for separating IC chips from wafers. This paper presents a comprehensive study of the UV-A scribing process, aiming to develop an understanding of sapphire’s material removal mechanism under varying ultrasonic power levels and cutting tool geometries. In this experimental investigation, the effect of five different levels of ultrasonic power and three different cutting tool tip angles at various feeding depths on the scribe-induced features of the sapphire surface has been presented with a quantitative and qualitative comparison. The findings indicate that at feeding depths less than 6 μm, UV-A scribing with 40–80% ultrasonic power can reduce cutting force up to 50% and thus improve scribe quality. However, between feeding depths of 6 to 10 μm, this advantage of using ultrasonic vibration gradually diminishes. Additionally, UV-A scribing with a smaller tool tip angle (60°) was found to lower cutting force by 65% and improve scribe quality, effectively inhibiting residual stress formation and microcrack propagation. Furthermore, UV-A scribing also facilitated higher critical feeding depths at around 10 μm, compared to 6 μm in conventional scribing. 
    more » « less
  5. Budak, Erhan (Ed.)
    This paper presents a generalized cutting force and regenerative chatter stability prediction for the modulated turning (MT) process. Uncut chip thickness is modeled by considering current tool kinematics and undulated (previously generated) surface topography for any given modulation condition in the feed direction. It is found that chip formation is governed by the undulated surface generated in multiple past spindle rotations. Uncut chip thickness is computed analytically in the form of trigonometric functions, and cutting forces are predicted by making use of orthogonal cutting mechanics. Regenerative chatter stability of the process is also modelled. Analytical semi-discretization-based solution is developed to accurately predict the stability lobe diagrams (SLDs) of the MT process. Predicted stability lobes are validated through numerical time-domain simulations and experimentally via orthogonal (plunge) turning tests. It is found that as compared to conventional single-point continuous turning, regenerative stability of MT exhibits multiple (3) regenerative delay loops and long out-of-cut duration in-between tool engagement stabilizes the process to reach up to 2x higher stable widths/depths as compared to the conventional continuous turning. 
    more » « less