skip to main content


Title: Learning-accelerated discovery of immune-tumour interactions
We present an integrated framework for enabling dynamic exploration of design spaces for cancer immunotherapies with detailed dynamical simulation models on high-performance computing resources. Our framework combines PhysiCell, an open source agent-based simulation platform for cancer and other multicellular systems, and EMEWS, an open source platform for extreme-scale model exploration. We build an agent-based model of immunosurveillance against heterogeneous tumours, which includes spatial dynamics of stochastic tumour–immune contact interactions. We implement active learning and genetic algorithms using high-performance computing workflows to adaptively sample the model parameter space and iteratively discover optimal cancer regression regions within biological and clinical constraints.  more » « less
Award ID(s):
1720625
NSF-PAR ID:
10188156
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Molecular Systems Design & Engineering
Volume:
4
Issue:
4
ISSN:
2058-9689
Page Range / eLocation ID:
747 to 760
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kemp, Melissa L. (Ed.)
    Tissue Forge is an open-source interactive environment for particle-based physics, chemistry and biology modeling and simulation. Tissue Forge allows users to create, simulate and explore models and virtual experiments based on soft condensed matter physics at multiple scales, from the molecular to the multicellular, using a simple, consistent interface. While Tissue Forge is designed to simplify solving problems in complex subcellular, cellular and tissue biophysics, it supports applications ranging from classic molecular dynamics to agent-based multicellular systems with dynamic populations. Tissue Forge users can build and interact with models and simulations in real-time and change simulation details during execution, or execute simulations off-screen and/or remotely in high-performance computing environments. Tissue Forge provides a growing library of built-in model components along with support for user-specified models during the development and application of custom, agent-based models. Tissue Forge includes an extensive Python API for model and simulation specification via Python scripts, an IPython console and a Jupyter Notebook, as well as C and C++ APIs for integrated applications with other software tools. Tissue Forge supports installations on 64-bit Windows, Linux and MacOS systems and is available for local installation via conda. 
    more » « less
  2. We introduce ABIDES, an open source Agent-Based Interactive Discrete Event Simulation environment. ABIDES is designed from the ground up to support agent-based research in market applications. While proprietary simulations are available within trading firms, there are no broadly available high-fidelity market simulation environments. ABIDES enables the simulation of tens of thousands of trading agents interacting with an exchange agent to facilitate transactions. It supports configurable pairwise noisy network latency between each individual agent as well as the exchange. Our simulator's message-based design is modeled after NASDAQ's published equity trading protocols ITCH and OUCH. We introduce the design of the simulator and illustrate its use and configuration with sample code, validating the environment with example trading scenarios. The utility of ABIDES for financial research is illustrated through experiments to develop a market impact model. The core of ABIDES is a general-purpose discrete event simulation, and we demonstrate its breadth of application with a non-finance work-in-progress simulating secure multiparty federated learning. We close with discussion of additional experimental problems it can be, or is being, used to explore, such as the development of machine learning trading algorithms. We hope that the availability of such a platform will facilitate research in this important area. 
    more » « less
  3. Background:

    Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022.

    Methods:

    We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance.

    Results:

    Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models.

    Conclusions:

    Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks.

    Funding:

    AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).

     
    more » « less
  4. Volunteer computing (VC) uses consumer digital electronics products, such as PCs, mobile devices, and game consoles, for high-throughput scientific computing. Device owners participate in VC by installing a program which, in the background, downloads and executes jobs from servers operated by science projects. Most VC projects use BOINC, an open-source middleware system for VC. BOINC allows scientists create and operate VC projects and enables volunteers to participate in these projects. Volunteers install a single application (the BOINC client) and then choose projects to support. We have developed a BOINC project, nanoHUB@home, to make use of VC in support of the nanoHUB science gateway. VC has greatly expanded the computational resources available for nanoHUB simulations. We are using VC to support “speculative exploration”, a model of computing that explores the input parameters of online simulation tools published through the nanoHUB gateway, pre-computing results that have not been requested by users. These results are stored in a cache, and when a user launches an interactive simulation our system first checks the cache. If the result is already available it is returned to the user immediately, leaving the computational resources free and not re-computing existing results. The cache is also useful for machine learning (ML) studies, building surrogate models for nanoHUB simulation tools that allow us to quickly estimate results before running an expensive simulation. VC resources also allow us to support uncertainty quantification (UQ) in nanoHUB simulation tools, to go beyond simulations and deliver real-world predictions. Models are typically simulated with precise input values, but real-world experiments involve imprecise values for device measurements, material properties, and stimuli. The imprecise values can be expressed as a probability distribution of values, such as a Gaussian distribution with a mean and standard deviation, or an actual distribution measured from experiments. Stochastic collocation methods can be used to predict the resulting outputs given a series of probability distributions for inputs. These computations require hundreds or thousands of simulation runs for each prediction. This workload is well-suited to VC, since the runs are completely separate, but the results of all runs are combined in a statistical analysis. 
    more » « less
  5. Volunteer computing (VC) uses consumer digital electronics products, such as PCs, mobile devices, and game consoles, for high-throughput scientific computing. Device owners participate in VC by installing a program which, in the background, downloads and executes jobs from servers operated by science projects. Most VC projects use BOINC, an open-source middleware system for VC. BOINC allows scientists create and operate VC projects and enables volunteers to participate in these projects. Volunteers install a single application (the BOINC client) and then choose projects to support. We have developed a BOINC project, nanoHUB@home, to make use of VC in support of the nanoHUB science gateway. VC has greatly expanded the computational resources available for nanoHUB simulations. We are using VC to support “speculative exploration”, a model of computing that explores the input parameters of online simulation tools published through the nanoHUB gateway, pre-computing results that have not been requested by users. These results are stored in a cache, and when a user launches an interactive simulation our system first checks the cache. If the result is already available it is returned to the user immediately, leaving the computational resources free and not re-computing existing results. The cache is also useful for machine learning (ML) studies, building surrogate models for nanoHUB simulation tools that allow us to quickly estimate results before running an expensive simulation. VC resources also allow us to support uncertainty quantification (UQ) in nanoHUB simulation tools, to go beyond simulations and deliver real-world predictions. Models are typically simulated with precise input values, but real-world experiments involve imprecise values for device measurements, material properties, and stimuli. The imprecise values can be expressed as a probability distribution of values, such as a Gaussian distribution with a mean and standard deviation, or an actual distribution measured from experiments. Stochastic collocation methods can be used to predict the resulting outputs given a series of probability distributions for inputs. These computations require hundreds or thousands of simulation runs for each prediction. This workload is well-suited to VC, since the runs are completely separate, but the results of all runs are combined in a statistical analysis. 
    more » « less