The efficient and timely optimization of microarchitecture for a target application is hindered by the long evaluation runtime of a design candidate, creating a serious burden. To tackle this problem, researchers have started using learning algorithms such as graph neural networks (GNNs) to accelerate the process by developing a surrogate of the target tool. However, challenges arise when developing such models for HLS tools due to the program's long dependency range and deeply coupled input program and transformations (i.e., pragmas). To address them, in this paper, we present HARP (Hierarchical Augmentation for Representation with Pragma optimization) with a novel hierarchical graph representation of the HLS design by introducing auxiliary nodes to include high-level hierarchical information about the design. Additionally, HARP decouples the representation of the program and its transformations and includes a neural pragma transformer (NPT) approach to facilitate a more systematic treatment of this process. Our proposed graph representation and model architecture of HARP not only enhance the performance of the model and design space exploration based on it but also improve the model's transfer learning capability, enabling easier adaptation to new environments.
more »
« less
HLPerf: Demystifying the Performance of HLS-based Graph Neural Networks with Dataflow Architectures
The development of FPGA-based applications using HLS is fraught with performance pitfalls and large design space exploration times. These issues are exacerbated when the application is complicated and its performance is dependent on the input data set, as is often the case with graph neural network approaches to machine learning. Here, we introduce HLPerf, an open-source, simulation-based performance evaluation framework for dataflow architectures that both supports early exploration of the design space and shortens the performance evaluation cycle. We apply the methodology to GNNHLS, an HLS-based graph neural network benchmark containing 6 commonly used graph neural network models and 4 datasets with distinct topologies and scales. The results show that HLPerf achieves over 10 000 × average simulation acceleration relative to RTL simulation and over 400 × acceleration relative to state-of-the-art cycle-accurate tools at the cost of 7% mean error rate relative to actual FPGA implementation performance. This acceleration positions HLPerf as a viable component in the design cycle.
more »
« less
- PAR ID:
- 10500905
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Reconfigurable Technology and Systems
- ISSN:
- 1936-7406
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
High-level synthesis (HLS) is an automated design process that transforms high-level code into optimized hardware designs, enabling rapid development of efficient hardware accelerators for various applications such as image processing, machine learning, and signal processing. To achieve optimal performance, HLS tools rely on pragmas, which are directives inserted into the source code to guide the synthesis process, and these pragmas can have various settings and values that significantly impact the resulting hardware design. State-of the-art ML-based HLS methods, such as harp, first train a deep learning model, typically based on graph neural networks (GNNs) applied to graph-based representations of the source code and its pragmas. They then perform design space exploration (DSE) to explore the pragma design space, rank candidate designs using the trained model, and return the top designs as the final designs. However, traditional DSE methods face challenges due to the highly nonlinear relationship between pragma settings and performance metrics, along with complex interactions between pragmas that affect performance in non-obvious ways. To address these challenges, we propose compareXplore, a novel approach that learns to compare hardware designs for effective HLS optimization. compareXplore introduces a hybrid loss function that combines pairwise preference learning with pointwise performance prediction, enabling the model to capture both relative preferences and absolute performance values. Moreover, we introduce a novel Node Difference Attention module that focuses on the most informative differences between designs, enhancing the model’s ability to identify critical pragmas impacting performance. compareXplore adopts a two-stage DSE approach, where a pointwise prediction model is used for the initial design pruning, followed by a pairwise comparison stage for precise performance verification. Experimental results demonstrate that compareXplore achieves significant improvements in ranking metrics and generates high quality HLS results for the selected designs, outperforming the existing state-of-the-art method.more » « less
-
The efficient and timely optimization of microarchitecture for a target application is hindered by the long evaluation runtime of a design candidate, creating a serious burden. To tackle this problem, researchers have started using learning algorithms such as graph neural networks (GNNs) to accelerate the process by developing a surrogate of the target tool. However, challenges arise when developing such models for HLS tools due to the program's long dependency range and deeply coupled input program and transformations (i.e., pragmas). To address them, in this paper, we present HARP ( H ierarchical A ugmentation for R epresentation with P ragma optimization) with a novel hierarchical graph representation of the HLS design by introducing auxiliary nodes to include high-level hierarchical information about the design. Additionally, HARP decouples the representation of the program and its transformations and includes a neural pragma transformer (NPT) approach to facilitate a more systematic treatment of this process. Our proposed graph representation and model architecture of HARP not only enhance the performance of the model and design space exploration based on it but also improve the model's transfer learning capability, enabling easier adaptation to new environments 1 1 All materials available at https://github.com/UCLA-VAST/HARP.more » « less
-
There have been several recent works proposed to utilize model-based optimization methods to improve the productivity of using high-level synthesis (HLS) to design domain-specific architectures. They would replace the time-consuming performance estimation or simulation of design with a proxy model, and automatically insert pragmas to guide hardware optimizations. In this work, we address the challenges associated with high-level synthesis (HLS) design space exploration (DSE) through the evolving landscape of HLS tools. As these tools develop, the quality of results (QoR) from synthesis can vary significantly, complicating the maintenance of optimal design strategies across different toolchains. We introduce Active-CEM, a task transfer learning scheme that leverages a model-based explorer designed to adapt efficiently to changes in toolchains. This approach optimizes sample efficiency by identifying high-quality design configurations under a new toolchain without requiring extensive re-evaluation. We further refine our methodology by incorporating toolchain-invariant modeling. This allows us to predict QoR changes more accurately despite shifts in the black-box implementation of the toolchains. Experiment results on the HLSyn benchmark transitioning to new toolchain show an average performance improvement of 2.38× compared to AutoDSE and a 1.2× improvement over HARP, while also increasing the sample efficiency by 5.75×, and reducing the runtime by 2.7×.more » « less
-
High-Level Synthesis (HLS) has enabled users to rapidly develop designs targeted for FPGAs from the behavioral description of the design. However, to synthesize an optimal design capable of taking better advantage of the target FPGA, a considerable amount of effort is needed to transform the initial behavioral description into a form that can capture the desired level of parallelism. Thus, a design space exploration (DSE) engine capable of optimizing large complex designs is needed to achieve this goal. We present a new DSE engine capable of considering code transformation, compiler directives (pragmas), and the compatibility of these optimizations. To accomplish this, we initially express the structure of the input code as a graph to guide the exploration process. To appropriately transform the code, we take advantage of ScaleHLS based on the multi-level compiler infrastructure (MLIR). Finally, we identify problems that limit the scalability of existing DSEs, which we name the “design space merging problem.” We address this issue by employing a Random Forest classifier that can successfully decrease the number of invalid design points without invoking the HLS compiler as a validation tool. We evaluated our DSE engine against the ScaleHLS DSE, outperforming it by a maximum of 59×. We additionally demonstrate the scalability of our design by applying our DSE to large-scale HLS designs, achieving a maximum speedup of 12× for the benchmarks in the MachSuite and Rodinia set.more » « less
An official website of the United States government

