Smart home IoT devices are becoming increasingly popular. Modern programmable smart home hubs such as SmartThings enable homeowners to manage devices in sophisticated ways to save energy, improve security, and provide conveniences. Unfortunately, many smart home systems contain vulnerabilities, potentially impacting home security and privacy. This paper presents Vigilia, a system that shrinks the attack surface of smart home IoT systems by restricting the network access of devices. As existing smart home systems are closed, we have created an open implementation of a similar programming and configuration model in Vigilia and extended the execution environment to maximally restrict communications by instantiating device-based network permissions. We have implemented and compared Vigilia with forefront IoT-defense systems; our results demonstrate that Vigilia outperforms these systems and incurs negligible overhead.
more »
« less
Expressing and Managing Network Policies for Emerging HPC Systems
Traditional high performance computing (HPC) centers that operate a single large supercomputer cluster have not required sophisticated mechanisms to manage and enforce network policies. Recently, HPC centers have expanded to support a wide range of computational infrastructure, such as OpenStack-based private clouds and Ceph object stores, each with its own unique characteristics and network security requirements. Network security policies are becoming more complex and harder to manage. To address the challenge, this paper explores ways to define and manage the new network policies required by emerging HPC systems. As the first step, we identify the new types of policies that are required and the technical capabilities needed to support them. We present example policies and discuss ways to implement those policies using emerging programmable networks and intent-based networks. We describe our initial work toward automatically converting human readable network policies into network configurations and programmable network controllers that implement those policies using business rule management systems.
more »
« less
- Award ID(s):
- 1642134
- PAR ID:
- 10188176
- Date Published:
- Journal Name:
- Practice and Experience in Advanced Research Computing on Rise of the Machines (learning)
- Page Range / eLocation ID:
- 1 to 7
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
One of the main roles of the Domain Name System (DNS) is to map domain names to IP addresses. Despite the importance of this function, DNS traffic often passes without being analyzed, thus making the DNS a center of attacks that keep evolving and growing. Software-based mitigation approaches and dedicated state-of-the-art firewalls can become a bottleneck and are subject to saturation attacks, especially in high-speed networks. The emerging P4-programmable data plane can implement a variety of network security mitigation approaches at high-speed rates without disrupting legitimate traffic. This paper describes a system that relies on programmable switches and their stateful processing capabilities to parse and analyze DNS traffic solely in the data plane, and subsequently apply security policies on domains according to the network administrator. In particular, Deep Packet Inspection (DPI) is leveraged to extract the domain name consisting of any number of labels and hence, apply filtering rules (e.g., blocking malicious domains). Evaluation results show that the proposed approach can parse more domain labels than any state-of-the-art P4-based approach. Additionally, a significant performance gain is attained when comparing it to a traditional software firewall -pfsense-, in terms of throughput, delay, and packet loss. The resources occupied by the implemented P4 program are minimal, which allows for more security functionalities to be added.more » « less
-
As High Performance Computing (HPC) applications with data security requirements are increasingly moving to execute in the public cloud, there is a demand that the cloud infrastructure for HPC should support privacy and integrity. Incorporating privacy and integrity mechanisms in the communication infrastructure of today's public cloud is challenging because recent advances in the networking infrastructure in data centers have shifted the communication bottleneck from the network links to the network end points and because encryption is computationally intensive. In this work, we consider incorporating encryption to support privacy and integrity in the Message Passing Interface (MPI) library, which is widely used in HPC applications. We empirically study four contemporary cryptographic libraries, OpenSSL, BoringSSL, Libsodium, and CryptoPP using micro-benchmarks and NAS parallel benchmarks to evaluate their overheads for encrypting MPI messages on two different networking technologies, 10Gbps Ethernet and 40Gbps InfiniBand. The results indicate that (1) the performance differs drastically across cryptographic libraries, and (2) effectively supporting privacy and integrity in MPI communications on high speed data center networks is challenging-even with the most efficient cryptographic library, encryption can still introduce very significant overheads in some scenarios such as a single MPI communication operation on InfiniBand, but (3) the overall overhead may not be prohibitive for practical uses since there can be multiple concurrent communications.more » « less
-
HPC networks and campus networks are beginning to leverage various levels of network programmability ranging from programmable network configuration (e.g., NETCONF/YANG, SNMP, OF-CONFIG) to software-based controllers (e.g., OpenFlow Controllers) to dynamic function placement via network function virtualization (NFV). While programmable networks offer new capabilities, they also make the network more difficult to debug. When applications experience unexpected network behavior, there is no established method to investigate the cause in a programmable network and many of the conventional troubleshooting debugging tools (e.g., ping and traceroute) can turn out to be completely useless. This absence of troubleshooting tools that support programmability is a serious challenge for researchers trying to understand the root cause of their networking problems. This paper explores the challenges of debugging an all-campus science DMZ network that leverages SDN-based network paths for high-performance flows. We propose Flow Tracer, a light-weight, data-plane-based debugging tool for SDN-enabled networks that allows end users to dynamically discover how the network is handling their packets. In particular, we focus on solving the problem of identifying an SDN path by using actual packets from the flow being analyzed as opposed to existing expensive approaches where either probe packets are injected into the network or actual packets are duplicated for tracing purposes. Our simulation experiments show that Flow Tracer has negligible impact on the performance of monitored flows. Moreover, our tool can be extended to obtain further information about the actual switch behavior, topology, and other flow information without privileged access to the SDN control plane.more » « less
-
Emerging microservices-based workloads introduce new security risks in today's data centers as attacks can propagate laterally within the data center relatively easily by exploiting cross-service dependencies. As countermeasures for such attacks, traditional perimeterization approaches, such as network-endpoint-based access control, do not fare well in highly dynamic microservices environments (especially considering the management complexity, scalability and policy granularity of these earlier approaches). In this paper, we propose eZTrust, a network-independent perimeterization approach for microservices. eZTrust allows data center tenants to express access control policies based on fine-grained workload identities, and enables data center operators to enforce such policies reliably and efficiently in a purely network-independent fashion. To this end, we leverage eBPF, the extended Berkeley Packet Filter, to trace authentic workload identities and apply per-packet tagging and verification. We demonstrate the feasibility of our approach through extensive evaluation of our proof-of-concept prototype implementation. We find that, when comparable policies are enforced, eZTrust incurs 2--5 times lower packet latency and 1.5--2.5 times lower CPU overhead than traditional perimeterization schemes.more » « less
An official website of the United States government

