Abstract A dynamic reaction–diffusion model of four variables is proposed to describe the spread of lytic viruses among phytoplankton in a poorly mixed aquatic environment. The basic ecological reproductive index for phytoplankton invasion and the basic reproduction number for virus transmission are derived to characterize the phytoplankton growth and virus transmission dynamics. The theoretical and numerical results from the model show that the spread of lytic viruses effectively controls phytoplankton blooms. This validates the observations and experimental results of Emiliana huxleyi-lytic virus interactions. The studies also indicate that the lytic virus transmission cannot occur in a low-light or oligotrophic aquatic environment.
more »
« less
Virus capsid assembly across different length scales inspire the development of virus-based biomaterials
- Award ID(s):
- 1720625
- PAR ID:
- 10188179
- Date Published:
- Journal Name:
- Current Opinion in Virology
- Volume:
- 36
- Issue:
- C
- ISSN:
- 1879-6257
- Page Range / eLocation ID:
- 38 to 46
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The coevolutionary dynamics of lytic viruses and microbes with CRISPR-Cas immunity exhibit alternations between sustained host control of viral proliferation and major viral epidemics in previous computational models. Thesealternatingdynamics have yet to be observed in other host–pathogen systems. Here, we address the breakdown of control and transition to large outbreaks with a stochastic eco-evolutionary model. We establish the role of host density-dependent competition in punctuated virus-driven succession and associated diversity trends that concentrate escape pathways during control phases. Using infection and escape networks, we derive the viral emergence probability whose fluctuations of increasing size and frequency characterize the approach to large outbreaks. We explore alternation probabilities as a function of non-dimensional parameters related to the probability of viral escape and host competition. Our results demonstrate how emergent feedbacks between host competition and viral diversification render the host immune structure fragile, potentiating a dynamical transition to large epidemics.more » « less
-
Abstract Virus filtration is a crucial step in ensuring the high levels of viral clearance required in the production of biotherapeutics produced in mammalian cells or derived from human plasma. Previous studies have reported that virus retention is often reduced in the presence of therapeutic proteins due to membrane fouling; however, the underlying mechanisms controlling this behavior are still not well understood. Experimental studies were performed with a single layer of the commercially available dual‐layer PegasusTMSV4 virus removal filter to more easily interpret the experimental results. Bacteriophage ФX174 was used as a model parvovirus, and human immunoglobulin (hIgG) and Bovine Serum Albumin (BSA) were used as model proteins. Data obtained with 5 g/L solutions of hIgG showed more than a 100‐fold reduction in virus retention compared to that in the protein‐free solution. Similar effects were seen with membranes that were pre‐fouled with hIgG and then challenged with ФX174. The experimental data were well‐described using an internal polarization model that accounts for virus capture and accumulation within the virus filter, with the hIgG nearly eliminating the irreversible virus capture while also facilitating the release of previously captured virus. These results provide important insights into the performance and validation of virus removal filters in bioprocessing.more » « less
An official website of the United States government

