skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrogenated silicon films for low-loss resonant reflectors operating in the visible region
Hydrogenation is a widely used method to improve performance of electronic devices made from silicon but much less frequently to improve corresponding optical properties. Here, we study the possible use of hydrogenation to reduce inherent optical loss in silicon. We address enablement of efficient resonance metastructures such as filters, wideband reflectors, and polarizers via successful outcomes of such experimentation. A noticeable reduction in attenuation is observed.  more » « less
Award ID(s):
1809143
PAR ID:
10188211
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Research and Applications of Photonics In Defense Conference (RAPID)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The sensitivity of gravitational-wave detectors is limited by the mechanical loss associated with the amorphous coatings of the detectors’ mirrors. Amorphous silicon has higher refraction index and lower mechanical loss than current high-index coatings, but its optical absorption at the wavelength used for the detectors is at present large. The addition of hydrogen to the amorphous silicon network reduces both optical absorption and mechanical loss for films prepared under a range of conditions at all measured wavelengths and temperatures, with a particularly large effect on films grown at room temperature. The uptake of hydrogen is greatest in the films grown at room temperature, but still below 1.5 at.% H, which show an ultralow optical absorption (below 10 ppm) measured at 2000 nm for 500-nm-thick films. These results show that hydrogenation is a promising strategy to reduce both optical absorption and mechanical loss in amorphous silicon, and may enable fabrication of mirror coatings for gravitational-wave detectors with improved sensitivity. 
    more » « less
  2. Hydrogenated amorphous silicon (a-Si:H) has drawn keen interest as a thin-film semiconductor and superb passivation layer in high-efficiency silicon solar cells due to its low cost, low processing temperature, high compatibility with substrates, and scalable manufacturing. Although the impact of hydrogenation on the structural, optical, and electronic properties of a-Si:H has been extensively studied, the underlying physics of its impact on the thermal properties is still unclear. Here, we synthesize a-Si:H films with well-controlled hydrogen concentrations using plasma-enhanced chemical vapor deposition and systematically study the thermal conductivity of these a-Si:H films using time-domain thermoreflectance. We find that the reduction of thermal conductivity of a-Si:H films is attributed to the suppression of diffuson and propagon contributions as the hydrogen concentration increases. At the maximum hydrogen concentration of 25.4 atomic percentage, the contributions from diffusons and propagons to the thermal conductivity are decreased by 40% (from 1.10 to 0.67 W m −1 K −1 ) and 64% (from 0.61 to 0.22 W m −1 K −1 ), respectively. Such a significant reduction in the thermal conductivity of a-Si:H originates from the hydrogen induced material softening, the decrease in density, and phonon-defect scattering. The results of this work provide fundamental insights into the thermal transport properties of a-Si:H thin films, which is beneficial for the design and optimization of amorphous silicon-based technologies including photovoltaics, large-area electronics, and thermoelectric devices. 
    more » « less
  3. A thin layer of Al 2 O 3 at the back of CdSe x T e1-x /CdTe devices is shown to passivate the back interface and drastically improve surface recombination lifetimes and photoluminescent response. Despite this, such devices do not show an improvement in open-circuit voltage (V OC. ) Adding a p + amorphous silicon layer behind the Al 2 O 3 bends the conduction band upward, reducing the barrier to hole extraction and improving collection. Further optimization of the Al 2 O 3 , amorphous silicon (a-Si), and indium-doped tin oxide (ITO) layers, as well as their interaction with the CdCl 2 passivation process, are necessary to translate these electro-optical improvements into gains in voltage. 
    more » « less
  4. Silicon carbide (SiC)-based defects are promising for quantum communications, quantum information processing, and for the next generation of quantum sensors, as they feature long coherence times, frequencies near the telecom, and optical and microwave transitions. For such applications, the efficient initialization of the spin state is necessary. We develop a theoretical description of the spin-polarization process by using the intersystem crossing of the silicon vacancy defect, which is enabled by a combination of optical driving, spin-orbit coupling, and interaction with vibrational modes. By using distinct optical drives, we analyze two spin-polarization channels. Interestingly, we find that different spin projections of the ground state manifold can be polarized. This paper helps in understanding initialization and readout of the silicon vacancy and explains some existing experiments with the silicon vacancy center in SiC. 
    more » « less
  5. Silicon carbide (SiC)-based defects are promising for quantum communications, quantum information processing, and for the next generation of quantum sensors, as they feature long coherence times, frequencies near the telecom, and optical and microwave transitions. For such applications, the efficient initialization of the spin state is necessary. We develop a theoretical description of the spin-polarization process by using the intersystem crossing of the silicon vacancy defect, which is enabled by a combination of optical driving, spin-orbit coupling, and interaction with vibrational modes. By using distinct optical drives, we analyze two spin-polarization channels. Interestingly, we find that different spin projections of the ground state manifold can be polarized. This paper helps in understanding initialization and readout of the silicon vacancy and explains some existing experiments with the silicon vacancy center in SiC. 
    more » « less