skip to main content


Title: Mechanical feedback enables catch bonds to selectively stabilize scanning microvilli at T-cell surfaces
T-cells use microvilli to search the surfaces of antigen-presenting cells for antigenic ligands. The active motion of scanning microvilli provides a force-generating mechanism that is intriguing in light of single-molecule experiments showing that applied forces increase the lifetimes of stimulatory receptor–ligand bonds (catch-bond behavior). In this work, we introduce a theoretical framework to explore the motion of a microvillar tip above an antigen-presenting surface when receptors on the tip stochastically bind to ligands on the surface and dissociate from them in a force-dependent manner. Forces on receptor-ligand bonds impact the motion of the microvillus, leading to feedback between binding and microvillar motion. We use computer simulations to show that the average microvillar velocity varies in a ligand-dependent manner; that catch bonds generate responses in which some microvilli almost completely stop, while others move with a broad distribution of velocities; and that the frequency of stopping depends on the concentration of stimulatory ligands. Typically, a small number of catch bonds initially immobilize the microvillus, after which additional bonds accumulate and increase the cumulative receptor-engagement time. Our results demonstrate that catch bonds can selectively slow and stabilize scanning microvilli, suggesting a physical mechanism that may contribute to antigen discrimination by T-cells.  more » « less
Award ID(s):
1753017
NSF-PAR ID:
10188450
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Molecular Biology of the Cell
Volume:
30
Issue:
16
ISSN:
1059-1524
Page Range / eLocation ID:
2087 to 2095
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The T cell receptor (TCR) initiates the elimination of pathogens and tumors by T cells. To avoid damage to the host, the receptor must be capable of discriminating between wild-type and mutated self and nonself peptide ligands presented by host cells. Exactly how the TCR does this is unknown. In resting T cells, the TCR is largely unphosphorylated due to the dominance of phosphatases over the kinases expressed at the cell surface. However, when agonist peptides are presented to the TCR by major histocompatibility complex proteins expressed by antigen-presenting cells (APCs), very fast receptor triggering, i.e., TCR phosphorylation, occurs. Recent work suggests that this depends on the local exclusion of the phosphatases from regions of contact of the T cells with the APCs. Here, we developed and tested a quantitative treatment of receptor triggering reliant only on TCR dwell time in phosphatase-depleted cell contacts constrained in area by cell topography. Using the model and experimentally derived parameters, we found that ligand discrimination likely depends crucially on individual contacts being ∼200 nm in radius, matching the dimensions of the surface protrusions used by T cells to interrogate their targets. The model not only correctly predicted the relative signaling potencies of known agonists and nonagonists but also achieved this in the absence of kinetic proofreading. Our work provides a simple, quantitative, and predictive molecular framework for understanding why TCR triggering is so selective and fast and reveals that, for some receptors, cell topography likely influences signaling outcomes. 
    more » « less
  2. Lavrik, Inna (Ed.)

    T cells form transient cell-to-cell contacts with antigen presenting cells (APCs) to facilitate surface interrogation by membrane bound T cell receptors (TCRs). Upon recognition of molecular signatures (antigen) of pathogen, T cells may initiate an adaptive immune response. The duration of the T cell/APC contact is observed to vary widely, yet it is unclear what constructive role, if any, such variations might play in immune signaling. Modeling efforts describing antigen discrimination often focus on steady-state approximations and do not account for the transient nature of cellular contacts. Within the framework of a kinetic proofreading (KP) mechanism, we develop a stochasticFirst Receptor Activation Model(FRAM) describing the likelihood that a productive immune signal is produced before the expiry of the contact. Through the use of extreme statistics, we characterize the probability that the first TCR triggering is induced by a rare agonist antigen and not by that of an abundant self-antigen. We show that defining positive immune outcomes as resilience to extreme statistics and sensitivity to rare events mitigates classic tradeoffs associated with KP. By choosing a sufficient number of KP steps, our model is able to yield single agonist sensitivity whilst remaining non-reactive to large populations of self antigen, even when self and agonist antigen are similar in dissociation rate to the TCR but differ largely in expression. Additionally, our model achieves high levels of accuracy even when agonist positive APCs encounters are rare. Finally, we discuss potential biological costs associated with high classification accuracy, particularly in challenging T cell environments.

     
    more » « less
  3. Abstract

    Antigen‐presenting cells (APCs), such as dendritic cells and macrophages, have a unique ability to survey the body and present information to T cells via peptide‐loaded major histocompatibility complexes (signal 1). This presentation, along with a co‐stimulatory signal (signal 2), leads to activation and subsequent expansion of T cells. This process can be harnessed and utilized for therapeutic applications, but the use of patient‐derived APCs can be complex and inefficient. Alternatively, artificial APCs (aAPCs) provide a simplified method to achieve T cell activation by presenting the two necessary stimulatory signals. This protocol describes the utilization of magnetic nanoparticles and stimulatory proteins to create aAPCs that can be employed for activating and expanding antigen‐specific T cells for both basic and translational immunology and immunotherapy studies. © 2024 Wiley Periodicals LLC.

    Basic Protocol 1: Protein and particle modification for aAPC fabrication

    Basic Protocol 2: aAPC validation by immunolabeling of conjugated protein

    Support Protocol 1: Quantification of aAPC stock concentration

    Basic Protocol 3: Determination of aAPC usage for murine CD8+T cell activation

    Support Protocol 2: Isolation of murine CD8+T cells

     
    more » « less
  4. Cells are known to exert forces to sense their physical surroundings for guidance of motion and fate decisions. Here, we propose that cells might do mechanical work to drive their own evolution, taking inspiration from the adaptive immune system. Growing evidence indicates that immune B cells—capable of rapid Darwinian evolution—use cytoskeletal forces to actively extract antigens from other cells’ surfaces. To elucidate the evolutionary significance of force usage, we develop a theory of tug-of-war antigen extraction that maps receptor binding characteristics to clonal reproductive fitness, revealing physical determinants of selection strength. This framework unifies mechanosensing and affinity-discrimination capabilities of evolving cells: Pulling against stiff antigen tethers enhances discrimination stringency at the expense of absolute extraction. As a consequence, active force usage can accelerate adaptation but may also cause extinction of cell populations, resulting in an optimal range of pulling strength that matches molecular rupture forces observed in cells. Our work suggests that nonequilibrium, physical extraction of environmental signals can make biological systems more evolvable at a moderate energy cost. 
    more » « less
  5. Mechanical properties of the extracellular matrix are important determinants of cellular migration in diverse processes, such as immune response, wound healing, and cancer metastasis. Moreover, recent studies indicate that even bacterial surface colonization can depend on the mechanics of the substrate. Here, we focus on physical mechanisms that can give rise to substrate-rigidity dependent migration. We study a “twitcher”, a cell driven by extension–retraction cycles, to idealize bacteria and perhaps eukaryotic cells that employ a slip-stick mode of motion. The twitcher is asymmetric and always pulls itself forward at its front. Analytical calculations show that the migration speed of a twitcher depends non-linearly on substrate rigidity. For soft substrates, deformations do not lead to build-up of significant force and the migration speed is therefore determined by stochastic adhesion unbinding. For rigid substrates, forced adhesion rupture determines the migration speed. Depending on the force-sensitivity of front and rear adhesions, forced bond rupture implies an increase or a decrease of the migration speed. A requirement for the occurrence of rigidity-dependent stick-slip migration is a “sticky” substrate, with binding rates being an order of magnitude larger than unbinding rates in absence of force. Computer simulations show that small stall forces of the driving machinery lead to a reduced movement on high rigidities, regardless of force-sensitivities of bonds. The simulations also confirm the occurrence of rigidity-dependent migration speed in a generic model for slip-stick migration of cells on a sticky substrate. 
    more » « less