skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Blood Glucose Level Prediction as Time-Series Modeling using Sequence-to-Sequence Neural Networks
The management of blood glucose levels is critical in the care of Type 1 diabetes subjects. In extremes, high or low levels of blood glucose are fatal. To avoid such adverse events, there is the development and adoption of wearable technologies that continuously monitor blood glucose and administer insulin. This technology allows subjects to easily track their blood glucose levels with early intervention without the need for hospital visits. The data collected from these sensors is an excellent candidate for the application of machine learning algorithms to learn patterns and predict future values of blood glucose levels. In this study, we developed artificial neural network algorithms based on the OhioT1DM training dataset that contains data on 12 subjects. The dataset contains features such as subject identifiers, continuous glucose monitoring data obtained in 5 minutes intervals, insulin infusion rate, etc. We developed individual models, including LSTM, BiLSTM, Convolutional LSTMs, TCN, and sequence-to-sequence models. We also developed transfer learning models based on the most important features of the data, as identified by a gradient boosting algorithm. These models were evaluated on the OhioT1DM test dataset that contains 6 unique subject’s data. The model with the lowest RMSE values for the 30- and 60-minutes was selected as the best performing model. Our result shows that sequence-to-sequence BiLSTM performed better than the other models. This work demonstrates the potential of artificial neural networks algorithms in the management of Type 1 diabetes.  more » « less
Award ID(s):
1928481
PAR ID:
10188463
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
CEUR workshop proceedings
ISSN:
1613-0073
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neural networks present a useful framework for learning complex dynamics, and are increasingly being considered as components to closed loop predictive control algorithms. However, if they are to be utilized in such safety-critical advisory settings, they must be provably "conformant" to the governing scientific (biological, chemical, physical) laws which underlie the modeled process. Unfortunately, this is not easily guaranteed as neural network models are prone to learn patterns which are artifacts of the conditions under which the training data is collected, which may not necessarily conform to underlying physiological laws. In this work, we utilize a formal range-propagation based approach for checking whether neural network models for predicting future blood glucose levels of individuals with type-1 diabetes are monotonic in terms of their insulin inputs. These networks are increasingly part of closed loop predictive control algorithms for "artificial pancreas" devices which automate control of insulin delivery for individuals with type-1 diabetes. Our approach considers a key property that blood glucose levels must be monotonically decreasing with increasing insulin inputs to the model. Multiple representative neural network models for blood glucose prediction are trained and tested on real patient data, and conformance is tested through our verification approach. We observe that standard approaches to training networks result in models which violate the core relationship between insulin inputs and glucose levels, despite having high prediction accuracy. We propose an approach that can learn conformant models without much loss in accuracy. 
    more » « less
  2. Abstract Background Blood glucose (BG) management is crucial for type-1 diabetes patients resulting in the necessity of reliable artificial pancreas or insulin infusion systems. In recent years, deep learning techniques have been utilized for a more accurate BG level prediction system. However, continuous glucose monitoring (CGM) readings are susceptible to sensor errors. As a result, inaccurate CGM readings would affect BG prediction and make it unreliable, even if the most optimal machine learning model is used. Methods In this work, we propose a novel approach to predicting blood glucose level with a stacked Long short-term memory (LSTM) based deep recurrent neural network (RNN) model considering sensor fault. We use the Kalman smoothing technique for the correction of the inaccurate CGM readings due to sensor error. Results For the OhioT1DM (2018) dataset, containing eight weeks’ data from six different patients, we achieve an average RMSE of 6.45 and 17.24 mg/dl for 30 min and 60 min of prediction horizon (PH), respectively. Conclusions To the best of our knowledge, this is the leading average prediction accuracy for the ohioT1DM dataset. Different physiological information, e.g., Kalman smoothed CGM data, carbohydrates from the meal, bolus insulin, and cumulative step counts in a fixed time interval, are crafted to represent meaningful features used as input to the model. The goal of our approach is to lower the difference between the predicted CGM values and the fingerstick blood glucose readings—the ground truth. Our results indicate that the proposed approach is feasible for more reliable BG forecasting that might improve the performance of the artificial pancreas and insulin infusion system for T1D diabetes management. 
    more » « less
  3. In this paper, we provide an approach to data-driven control for artificial pancreas systems by learning neural network models of human insulin-glucose physiology from available patient data and using a mixed integer optimization approach to control blood glucose levels in real-time using the inferred models. First, our approach learns neural networks to predict the future blood glucose values from given data on insulin infusion and their resulting effects on blood glucose levels. However, to provide guarantees on the resulting model, we use quantile regression to fit multiple neural networks that predict upper and lower quantiles of the future blood glucose levels, in addition to the mean. Using the inferred set of neural networks, we formulate a model-predictive control scheme that adjusts both basal and bolus insulin delivery to ensure that the risk of harmful hypoglycemia and hyperglycemia are bounded using the quantile models while the mean prediction stays as close as possible to the desired target. We discuss how this scheme can handle disturbances from large unannounced meals as well as infeasibilities that result from situations where the uncertainties in future glucose predictions are too high. We experimentally evaluate this approach on data obtained from a set of 17 patients over a course of 40 nights per patient. Furthermore, we also test our approach using neural networks obtained from virtual patient models available through the UVA-Padova simulator for type-1 diabetes. 
    more » « less
  4. Abstract BackgroundEffective diabetes management requires precise glycemic control to prevent both hypoglycemia and hyperglycemia, yet existing machine learning (ML) and reinforcement learning (RL) approaches often fail to balance competing objectives. Traditional RL-based glucose regulation systems primarily focus on single-objective optimization, overlooking factors such as minimizing insulin overuse, reducing glycemic variability, and ensuring patient safety. Furthermore, these approaches typically rely on centralized data processing, which raises privacy concerns due to the sensitive nature of health care data. There is a critical need for a decentralized, privacy-preserving framework that can personalize blood glucose regulation while addressing the multiobjective nature of diabetes management. ObjectiveThis study aimed to develop and validate PRIMO-FRL (Privacy-Preserving Reinforcement Learning for Individualized Multi-Objective Glycemic Management Using Federated Reinforcement Learning), a novel framework that optimizes clinical objectives—maximizing time in range (TIR), reducing hypoglycemia and hyperglycemia, and minimizing glycemic risk—while preserving patient privacy. MethodsWe developed PRIMO-FRL, integrating multiobjective reward shaping to dynamically balance glucose stability, insulin efficiency, and risk reduction. The model was trained and tested using simulated data from 30 simulated patients (10 children, 10 adolescents, and 10 adults) generated with the Food and Drug Administration (FDA)–approved UVA/Padova simulator. A comparative analysis was conducted against state-of-the-art RL and ML models, evaluating performance using metrics such as TIR, hypoglycemia (<70 mg/dL), hyperglycemia (>180 mg/dL), and glycemic risk scores. ResultsThe PRIMO-FRL model achieved a robust overall TIR of 76.54%, with adults demonstrating the highest TIR at 81.48%, followed by children at 77.78% and adolescents at 70.37%. Importantly, the approach eliminated hypoglycemia, with 0.0% spent below 70 mg/dL across all cohorts, significantly outperforming existing methods. Mild hyperglycemia (180-250 mg/dL) was observed in adolescents (29.63%), children (22.22%), and adults (18.52%), with adults exhibiting the best control. Furthermore, the PRIMO-FRL approach consistently reduced glycemic risk scores, demonstrating improved safety and long-term stability in glucose regulation.. ConclusionsOur findings highlight the potential of PRIMO-FRL as a transformative, privacy-preserving approach to personalized glycemic management. By integrating federated RL, this framework eliminates hypoglycemia, improves TIR, and preserves data privacy by decentralizing model training. Unlike traditional centralized approaches that require sharing sensitive health data, PRIMO-FRL leverages federated learning to keep patient data local, significantly reducing privacy risks while enabling adaptive and personalized glucose control. This multiobjective optimization strategy offers a scalable, secure, and clinically viable solution for real-world diabetes care. The ability to train personalized models across diverse populations without exposing raw data makes PRIMO-FRL well-suited for deployment in privacy-sensitive health care environments. These results pave the way for future clinical adoption, demonstrating the potential of privacy-preserving artificial intelligence in optimizing glycemic regulation while maintaining security, adaptability, and personalization. 
    more » « less
  5. Abstract The management of diabetes in a manner offering autonomous insulin therapy responsive to glucose‐directed need, and moreover with a dosing schedule amenable to facile administration, remains an ongoing goal to improve the standard of care. While basal insulins with reduced dosing frequency, even once‐weekly administration, are on the horizon, there is still no approved therapy that offers glucose‐responsive insulin function. Herein, a nanoscale complex combining both electrostatic‐ and dynamic‐covalent interactions between a synthetic dendrimer carrier and an insulin analogue modified with a high‐affinity glucose‐binding motif yields an injectable insulin depot affording both glucose‐directed and long‐lasting insulin availability. Following a single injection, it is even possible to control blood glucose for at least one week in diabetic swine subjected to daily oral glucose challenges. Measurements of serum insulin concentration in response to challenge show increases in insulin corresponding to elevated blood glucose levels, an uncommon finding even in preclinical work on glucose‐responsive insulin. Accordingly, the subcutaneous nanocomplex that results from combining electrostatic‐ and dynamic‐covalent interactions between a modified insulin and a synthetic dendrimer carrier affords a glucose‐responsive insulin depot for week‐long control following a single routine injection. 
    more » « less