skip to main content


Title: Robust Data-Driven Control of Artificial Pancreas Systems Using Neural Networks
In this paper, we provide an approach to data-driven control for artificial pancreas systems by learning neural network models of human insulin-glucose physiology from available patient data and using a mixed integer optimization approach to control blood glucose levels in real-time using the inferred models. First, our approach learns neural networks to predict the future blood glucose values from given data on insulin infusion and their resulting effects on blood glucose levels. However, to provide guarantees on the resulting model, we use quantile regression to fit multiple neural networks that predict upper and lower quantiles of the future blood glucose levels, in addition to the mean. Using the inferred set of neural networks, we formulate a model-predictive control scheme that adjusts both basal and bolus insulin delivery to ensure that the risk of harmful hypoglycemia and hyperglycemia are bounded using the quantile models while the mean prediction stays as close as possible to the desired target. We discuss how this scheme can handle disturbances from large unannounced meals as well as infeasibilities that result from situations where the uncertainties in future glucose predictions are too high. We experimentally evaluate this approach on data obtained from a set of 17 patients over a course of 40 nights per patient. Furthermore, we also test our approach using neural networks obtained from virtual patient models available through the UVA-Padova simulator for type-1 diabetes.  more » « less
Award ID(s):
1815983 1646556 1446900
NSF-PAR ID:
10098747
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Lecture notes in computer science
Volume:
11095
ISSN:
0302-9743
Page Range / eLocation ID:
183-202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neural networks present a useful framework for learning complex dynamics, and are increasingly being considered as components to closed loop predictive control algorithms. However, if they are to be utilized in such safety-critical advisory settings, they must be provably "conformant" to the governing scientific (biological, chemical, physical) laws which underlie the modeled process. Unfortunately, this is not easily guaranteed as neural network models are prone to learn patterns which are artifacts of the conditions under which the training data is collected, which may not necessarily conform to underlying physiological laws. In this work, we utilize a formal range-propagation based approach for checking whether neural network models for predicting future blood glucose levels of individuals with type-1 diabetes are monotonic in terms of their insulin inputs. These networks are increasingly part of closed loop predictive control algorithms for "artificial pancreas" devices which automate control of insulin delivery for individuals with type-1 diabetes. Our approach considers a key property that blood glucose levels must be monotonically decreasing with increasing insulin inputs to the model. Multiple representative neural network models for blood glucose prediction are trained and tested on real patient data, and conformance is tested through our verification approach. We observe that standard approaches to training networks result in models which violate the core relationship between insulin inputs and glucose levels, despite having high prediction accuracy. We propose an approach that can learn conformant models without much loss in accuracy. 
    more » « less
  2. The management of blood glucose levels is critical in the care of Type 1 diabetes subjects. In extremes, high or low levels of blood glucose are fatal. To avoid such adverse events, there is the development and adoption of wearable technologies that continuously monitor blood glucose and administer insulin. This technology allows subjects to easily track their blood glucose levels with early intervention without the need for hospital visits. The data collected from these sensors is an excellent candidate for the application of machine learning algorithms to learn patterns and predict future values of blood glucose levels. In this study, we developed artificial neural network algorithms based on the OhioT1DM training dataset that contains data on 12 subjects. The dataset contains features such as subject identifiers, continuous glucose monitoring data obtained in 5 minutes intervals, insulin infusion rate, etc. We developed individual models, including LSTM, BiLSTM, Convolutional LSTMs, TCN, and sequence-to-sequence models. We also developed transfer learning models based on the most important features of the data, as identified by a gradient boosting algorithm. These models were evaluated on the OhioT1DM test dataset that contains 6 unique subject’s data. The model with the lowest RMSE values for the 30- and 60-minutes was selected as the best performing model. Our result shows that sequence-to-sequence BiLSTM performed better than the other models. This work demonstrates the potential of artificial neural networks algorithms in the management of Type 1 diabetes. 
    more » « less
  3. Abstract

    Continuous monitoring of blood glucose (BG) levels is a key aspect of diabetes management. Patients with Type-1 diabetes (T1D) require an effective tool to monitor these levels in order to make appropriate decisions regarding insulin administration and food intake to keep BG levels in target range. Effectively and accurately predicting future BG levels at multi-time steps ahead benefits a patient with diabetes by helping them decrease the risks of extremes in BG including hypo- and hyperglycemia. In this study, we present a novel multi-component deep learning model that predicts the BG levels in a multi-step look ahead fashion. The model is evaluated both quantitatively and qualitatively on actual blood glucose data for 97 patients. For the prediction horizon (PH) of 30 mins, the average values forroot mean squared error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE), andnormalized mean squared error(NRMSE) are$$23.22 \pm 6.39$$23.22±6.39mg/dL, 16.77 ± 4.87 mg/dL,$$12.84 \pm 3.68$$12.84±3.68and$$0.08 \pm 0.01$$0.08±0.01respectively. When Clarke and Parkes error grid analyses were performed comparing predicted BG with actual BG, the results showed average percentage of points in Zone A of$$80.17 \pm 9.20$$80.17±9.20and$$84.81 \pm 6.11,$$84.81±6.11,respectively. We offer this tool as a mechanism to enhance the predictive capabilities of algorithms for patients with T1D.

     
    more » « less
  4. Abstract Background Blood glucose (BG) management is crucial for type-1 diabetes patients resulting in the necessity of reliable artificial pancreas or insulin infusion systems. In recent years, deep learning techniques have been utilized for a more accurate BG level prediction system. However, continuous glucose monitoring (CGM) readings are susceptible to sensor errors. As a result, inaccurate CGM readings would affect BG prediction and make it unreliable, even if the most optimal machine learning model is used. Methods In this work, we propose a novel approach to predicting blood glucose level with a stacked Long short-term memory (LSTM) based deep recurrent neural network (RNN) model considering sensor fault. We use the Kalman smoothing technique for the correction of the inaccurate CGM readings due to sensor error. Results For the OhioT1DM (2018) dataset, containing eight weeks’ data from six different patients, we achieve an average RMSE of 6.45 and 17.24 mg/dl for 30 min and 60 min of prediction horizon (PH), respectively. Conclusions To the best of our knowledge, this is the leading average prediction accuracy for the ohioT1DM dataset. Different physiological information, e.g., Kalman smoothed CGM data, carbohydrates from the meal, bolus insulin, and cumulative step counts in a fixed time interval, are crafted to represent meaningful features used as input to the model. The goal of our approach is to lower the difference between the predicted CGM values and the fingerstick blood glucose readings—the ground truth. Our results indicate that the proposed approach is feasible for more reliable BG forecasting that might improve the performance of the artificial pancreas and insulin infusion system for T1D diabetes management. 
    more » « less
  5. Abstract

    Understanding the complex growth and metabolic dynamics in microorganisms requires advanced kinetic models containing both metabolic reactions and enzymatic regulation to predict phenotypic behaviors under different conditions and perturbations. Most current kinetic models lack gene expression dynamics and are separately calibrated to distinct media, which consequently makes them unable to account for genetic perturbations or multiple substrates. This challenge limits our ability to gain a comprehensive understanding of microbial processes towards advanced metabolic optimizations that are desired for many biotechnology applications. Here, we present an integrated computational and experimental approach for the development and optimization of mechanistic kinetic models for microbial growth and metabolic and enzymatic dynamics. Our approach integrates growth dynamics, gene expression, protein secretion, and gene‐deletion phenotypes. We applied this methodology to build a dynamic model of the growth kinetics in batch culture of the bacteriumCellvibrio japonicusgrown using either cellobiose or glucose media. The model parameters were inferred from an experimental data set using an evolutionary computation method. The resulting model was able to explain the growth dynamics ofC. japonicususing either cellobiose or glucose media and was also able to accurately predict the metabolite concentrations in the wild‐type strain as well as in β‐glucosidase gene deletion mutant strains. We validated the model by correctly predicting the non‐diauxic growth and metabolite consumptions of the wild‐type strain in a mixed medium containing both cellobiose and glucose, made further predictions of mutant strains growth phenotypes when using cellobiose and glucose media, and demonstrated the utility of the model for designing industrially‐useful strains. Importantly, the model is able to explain the role of the different β‐glucosidases and their behavior under genetic perturbations. This integrated approach can be extended to other metabolic pathways to produce mechanistic models for the comprehensive understanding of enzymatic functions in multiple substrates.

     
    more » « less