skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Immersive Search: Using Virtual Reality to Examine How a Third Dimension Impacts the Searching Process
In this paper, we present results from an exploratory study to investigate users’ behaviors and preferences for three different styles of search results presentation in a virtual reality (VR) head-mounted display (HMD). Prior work in 2D displays has suggested possible benefits of presenting information in ways that exploit users’ spatial cognition abilities. We designed a VR system that displays search results in three different spatial arrangements: a list of 8 results, a 4x5 grid, and a 2x10 arc. These spatial display conditions were designed to differ in terms of the number of results displayed per page (8 vs 20) and the amount of head movement required to scan the results (list < grid < arc). Thirty-six participants completed 6 search trials in each display condition (18 total). For each trial, the participant was presented with a display of search results and asked to find a given target result or to indicate that the target was not present. We collected data about users’ behaviors with and perceptions about the three display conditions using interaction data, questionnaires, and interviews. We explore the effects of display condition and target presence on behavioral measures (e.g., completion time, head movement, paging events, accuracy) and on users’ perceptions (e.g., workload, ease of use, comfort, confidence, difficulty, and lostness). Our results suggest that there was no difference in accuracy among the display conditions, but that users completed tasks more quickly using the arc. However, users also expressed lower preferences for the arc, instead preferring the list and grid displays. Our findings extend prior research on visual search into to the area of 3-dimensional result displays for interactive information retrieval in VR HMD environments.  more » « less
Award ID(s):
1718295
PAR ID:
10188469
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval
Page Range / eLocation ID:
1621 - 1624
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The number of people who own a virtual reality (VR) head-mounted display (HMD) has reached a point where researchers can readily recruit HMD owners to participate remotely using their own equipment. However, HMD owners recruited online may differ from the university community members who typically participate in VR research. HMD owners (n=220) and non-owners (n=282) were recruited through two online work sites-Amazon's Mechanical Turk and Prolific-and an undergraduate participant pool. Participants completed a survey in which they provided demographic information and completed measures of HMD use, video game use, spatial ability, and motion sickness susceptibility. In the context of the populations sampled, the results provide 1) a characterization of HMD owners, 2) a snapshot of the most commonly owned HMDs, 3) a comparison between HMD owners and non-owners, and 4) a comparison among online workers and undergraduates. Significant gender differences were found: men reported lower motion sickness susceptibility and more video game hours than women, and men outperformed women on spatial tasks. Men comprised a greater proportion of HMD owners than non-owners, but after accounting for this imbalance, HMD owners did not differ appreciably from non-owners. Comparing across recruitment platform, male undergraduates outperformed male online workers on spatial tests, and female undergraduates played fewer video game hours than female online workers. The data removal rate was higher from Amazon compared to Prolific, possibly reflecting greater dishonesty. These results provide a description of HMD users that can inform researchers recruiting remote participants through online work sites. These results also signal a need for caution when comparing in-person VR research that primarily enrolls undergraduates to online VR research that enrolls online workers. 
    more » « less
  2. As we develop computing platforms for augmented reality (AR) head-mounted display (HMDs) technologies for social or workplace environments, understanding how users interact with notifications in immersive environments has become crucial. We researched effectiveness and user preferences of different interaction modalities for notifications, along with two types of notification display methods. In our study, participants were immersed in a simulated cooking environment using an AR-HMD, where they had to fulfill customer orders. During the cooking process, participants received notifications related to customer orders and ingredient updates. They were given three interaction modes for those notifications: voice commands, eye gaze and dwell, and hand gestures. To manage multiple notifications at once, we also researched two different notification list displays, one attached to the user’s hand and one in the world. Results indicate that participants preferred using their hands to interact with notifications and having the list of notifications attached to their hands. Voice and gaze interaction was perceived as having lower usability than touch 
    more » « less
  3. Virtual reality is a powerful tool for teaching 3D digital technologies in building engineering, as it facilitates the spatial perception of three-dimensional space. Spatial orientation skill is necessary for understanding 3D space. With VR, users navigate through virtually designed buildings and must be constantly aware of their position relative to other elements of the environment (orientation during navigation). In the present study, 25 building engineering students performed navigation tasks in a desktop-VR environment workshop. Performance of students using the desktop-VR was compared to a previous workshop in which navigation tasks were carried out using head-mounted displays. The Perspective Taking/Spatial Orientation Test measured spatial orientation skill. A questionnaire on user experience in the virtual environment was also administered. The gain in spatial orientation skill was 12.62%, similar to that obtained with head-mounted displays (14.23%). The desktop VR environment is an alternative to the HMD-VR environment for planning strategies to improve spatial orientation. Results from the user-experience questionnaire showed that the desktop VR environment strategy was well perceived by students in terms of interaction, 3D visualization, navigation, and sense of presence. Unlike in the HDM VR environment, student in the desktop VR environment did not report feelings of fatigue or dizziness. 
    more » « less
  4. The immersive nature of Virtual Reality (VR) and its reliance on sensory devices like head-mounted displays introduce privacy risks to users. While earlier research has explored users' privacy concerns within VR environments, less is known about users' comprehension of VR data practices and protective behaviors; the expanding VR market and technological progress also necessitate a fresh evaluation. We conducted semi-structured interviews with 20 VR users, showing their diverse perceptions regarding the types of data collected and their intended purposes. We observed privacy concerns in three dimensions: institutional, social, and device-specific. Our participants sought to protect their privacy through considerations when selecting the device, scrutinizing VR apps, and selective engagement in different VR interactions. We contrast our findings with observations from other technologies and ecosystems, shedding light on how VR has altered the privacy landscape for end-users. We further offer recommendations to alleviate users' privacy concerns, rectify misunderstandings, and encourage the adoption of privacy-conscious behaviors. 
    more » « less
  5. Few VR applications and games implement captioning of speech and audio cues, which either inhibits or prevents access of their application by deaf or hard of hearing (DHH) users, new language learners, and other caption users. Additionally, little to no guidelines exist on how to implement live captioning on VR headsets and how it may differ from traditional television captioning. To help fill the void of information behind user preferences of different VR captioning styles, we conducted a study with eight DHH participants to test three caption movement behaviors (head-locked, lag, and appear- locked) while watching live-captioned, single-speaker presentations in VR. Participants answered a series of Likert scale and open-ended questions about their experience. Participants’ preferences were split, but most participants reported feeling comfortable with using live captions in VR and enjoyed the experience. When participants ranked the caption behaviors, there was almost an equal divide between the three types tested. IPQ results indicated each behavior had similar immersion ratings, however participants found head-locked and lag captions more user-friendly than appear-locked captions. We suggest that participants may vary in caption preference depending on how they use captions, and that providing opportunities for caption customization is best. 
    more » « less