skip to main content


Title: The fuel of atmospheric chemistry: Toward a complete description of reactive organic carbon
The Earth’s atmosphere contains a multitude of emitted (primary) and chemically formed (secondary) gases and particles that degrade air quality and modulate the climate. Reactive organic carbon (ROC) species are the fuel of the chemistry of the atmosphere, dominating short-lived emissions, reactivity, and the secondary production of key species such as ozone, particulate matter, and carbon dioxide. Despite the central importance of ROC, the diversity and complexity of this class of species has been a longstanding obstacle to developing a comprehensive understanding of how the composition of our atmosphere, and the associated environmental implications, will evolve. Here, we characterize the role of ROC in atmospheric chemistry and the challenges inherent in measuring and modeling ROC, and highlight recent progress toward achieving mass closure for the complete description of atmospheric ROC.  more » « less
Award ID(s):
1638672
NSF-PAR ID:
10188522
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
6
ISSN:
2375-2548
Page Range / eLocation ID:
eaay8967
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The Arctic is a climatically sensitive region that has experienced warming at almost 3 times the global average rate in recent decades, leading to an increase in Arctic greenness and a greater abundance of plants that emit biogenic volatile organic compounds (BVOCs). These changes in atmospheric emissions are expected to significantly modify the overall oxidative chemistry of the region and lead to changes in VOC composition and abundance, with implications for atmospheric processes. Nonetheless, observations needed to constrain our current understanding of these issues in this critical environment are sparse. This work presents novel atmospheric in situ proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) measurements of VOCs at Toolik Field Station (TFS; 68∘38′ N, 149∘36' W), in the Alaskan Arctictundra during May–June 2019. We employ a custom nested grid version of theGEOS-Chem chemical transport model (CTM), driven with MEGANv2.1 (Model ofEmissions of Gases and Aerosols from Nature version 2.1) biogenic emissionsfor Alaska at 0.25∘ × 0.3125∘ resolution, to interpret the observations in terms of their constraints onBVOC emissions, total reactive organic carbon (ROC) composition, andcalculated OH reactivity (OHr) in this environment. We find total ambientmole fraction of 78 identified VOCs to be 6.3 ± 0.4 ppbv (10.8 ± 0.5 ppbC), with overwhelming (> 80 %) contributions are from short-chain oxygenated VOCs (OVOCs) including methanol, acetone and formaldehyde. Isoprene was the most abundant terpene identified. GEOS-Chem captures the observed isoprene (and its oxidation products), acetone and acetaldehyde abundances within the combined model and observation uncertainties (±25 %), but underestimates other OVOCs including methanol, formaldehyde, formic acid and acetic acid by a factor of 3 to 12. The negative model bias for methanol is attributed to underestimated biogenic methanol emissions for the Alaskan tundra in MEGANv2.1. Observed formaldehyde mole fractions increase exponentially with air temperature, likely reflecting its biogenic precursors and pointing to a systematic model underprediction of its secondary production. The median campaign-calculated OHr from VOCs measured at TFS was 0.7 s−1, roughly 5 % of the values typically reported in lower-latitude forested ecosystems. Ten species account for over 80 % of the calculated VOC OHr, with formaldehyde, isoprene and acetaldehyde together accounting for nearly half of the total. Simulated OHr based on median-modeled VOCs included in GEOS-Chem averages 0.5 s−1 and is dominated by isoprene (30 %) and monoterpenes (17 %). The data presented here serve as a critical evaluation of our knowledge of BVOCs and ROC budgets in high-latitude environments and represent a foundation for investigating and interpreting future warming-driven changes in VOC emissions in the Alaskan Arctic tundra. 
    more » « less
  2. Recent studies have found concentrations of reactive chlorine species to be higher than expected, suggesting that atmospheric chlorine chemistry is more extensive than previously thought. Chlorine radicals can interact with hydroperoxy (HOx) radicals and nitrogen oxides (NOx) to alter the oxidative capacity of the atmosphere. They are known to rapidly oxidize a wide range of volatile organic compounds (VOCs) found in the atmosphere, yet little is known about secondary organic aerosol (SOA) formation from chlorine-initiated photooxidation and its atmospheric implications. Environmental chamber experiments were carried out under low-NOx conditions with isoprene and chlorine as primary VOC and oxidant sources. Upon complete isoprene consumption, observed SOA yields ranged from 7 to 36 %, decreasing with extended photooxidation and SOA aging. Formation of particulate organochloride was observed. A high-resolution time-of-flight chemical ionization mass spectrometer was used to determine the molecular composition of gas-phase species using iodide–water and hydronium–water cluster ionization. Multi-generational chemistry was observed, including ions consistent with hydroperoxides, chloroalkyl hydroperoxides, isoprene-derived epoxydiol (IEPOX), and hypochlorous acid (HOCl), evident of secondary OH production and resulting chemistry from Cl-initiated reactions. This is the first reported study of SOA formation from chlorine-initiated oxidation of isoprene. Results suggest that tropospheric chlorine chemistry could contribute significantly to organic aerosol loading. 
    more » « less
  3. Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales.

    This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts. 
    more » « less
  4. null (Ed.)
    Abstract. Reactions of the hydroxyl (OH) and peroxy (HO2 and RO2) radicals playa central role in the chemistry of the atmosphere. In addition to controlling the lifetimes ofmany trace gases important to issues of global climate change, OH radical reactionsinitiate the oxidation of volatile organic compounds (VOCs) which can lead to the production ofozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicalsin forest environments characterized by high mixing ratios of isoprene and low mixing ratios ofnitrogen oxides (NOx) (typically less than 1–2 ppb) have shown seriousdiscrepancies with modeled concentrations. These results bring into question our understanding ofthe atmospheric chemistry of isoprene and other biogenic VOCs under low NOxconditions. During the summer of 2015, OH and HO2 radical concentrations, as well as totalOH reactivity, were measured using laser-induced fluorescence–fluorescence assay by gasexpansion (LIF-FAGE) techniques as part of the Indiana Radical Reactivity and Ozone productioN InterComparison (IRRONIC). This campaign took place in a forested area near Indiana University's Bloomington campus which is characterized by high mixing ratios of isoprene (average daily maximum ofapproximately 4 ppb at 28 ∘C) and low mixing ratios of NO (diurnal averageof approximately 170 ppt). Supporting measurements of photolysis rates, VOCs,NOx, and other species were used to constrain a zero-dimensional box model basedon the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism (MCM 3.2),including versions of the Leuven isoprene mechanism (LIM1) for HOx regeneration(RACM2-LIM1 and MCM 3.3.1). Using an OH chemical scavenger technique, the study revealed thepresence of an interference with the LIF-FAGE measurements of OH that increased with bothambient concentrations of ozone and temperature with an average daytime maximum equivalentOH concentration of approximately 5×106 cm−3. Subtraction of theinterference resulted in measured OH concentrations of approximately4×106 cm−3 (average daytime maximum) that were in better agreement with modelpredictions although the models underestimated the measurements in the evening. The addition ofversions of the LIM1 mechanism increased the base RACM2 and MCM 3.2 modeled OH concentrationsby approximately 20 % and 13 %, respectively, with the RACM2-LIM1 mechanism providing thebest agreement with the measured concentrations, predicting maximum daily OH concentrationsto within 30 % of the measured concentrations. Measurements of HO2 concentrationsduring the campaign (approximately a 1×109 cm−3 average daytime maximum)included a fraction of isoprene-based peroxy radicals(HO2*=HO2+αRO2) and were found to agree with modelpredictions to within 10 %–30 %. On average, the measured reactivity was consistent with thatcalculated from measured OH sinks to within 20 %, with modeled oxidation productsaccounting for the missing reactivity, however significant missing reactivity (approximately40 % of the total measured reactivity) was observed on some days. 
    more » « less
  5. Abstract

    Agricultural fields in drylands are challenged globally by limited freshwater resources for irrigation and also by elevated soil salinity and sodicity. It is well known that pedogenic carbonate is less soluble than evaporate salts and commonly forms in natural drylands. However, few studies have evaluated how irrigation loads dissolved calcium and bicarbonate to agricultural fields, accelerating formation rates of secondary calcite and simultaneously releasing abiotic CO2to the atmosphere. This study reports one of the first geochemical and isotopic studies of such “anthropogenic” pedogenic carbonates and CO2from irrigated drylands of southwestern United States. A pecan orchard and an alfalfa field, where flood-irrigation using the Rio Grande river is a common practice, were compared to a nearby natural dryland site. Strontium and carbon isotope ratios show that bulk pedogenic carbonates in irrigated soils at the pecan orchard primarily formed due to flood-irrigation, and that approximately 20–50% of soil CO2in these irrigated soils is calcite-derived abiotic CO2instead of soil-respired or atmospheric origins. Multiple variables that control the salt buildup in this region are identified and impact the crop production and soil sustainability regionally and globally. Irrigation intensity and water chemistry (irrigation water quantity and quality) dictate salt loading, and soil texture governs water infiltration and salt leaching. In the study area, agricultural soils have accumulated up to 10 wt% of calcite after just about 100 years of cultivation. These rates will likely increase in the future due to the combined effects of climate variability (reduced rainfall and more intense evaporation), use of more brackish groundwater for irrigation, and reduced porosity in soils. The enhanced accumulation rates of pedogenic carbonate are accompanied by release of large amounts of abiotic CO2from irrigated drylands to atmosphere. Extensive field studies and modelling approaches are needed to further quantify these effluxes at local, regional and global scales.

     
    more » « less