skip to main content


Title: Submodularity in Conic Quadratic Mixed 0–1 Optimization
We describe strong convex valid inequalities for conic quadratic mixed 0–1 optimization. These inequalities can be utilized for solving numerous practical nonlinear discrete optimization problems from value-at-risk minimization to queueing system design, from robust interdiction to assortment optimization through appropriate conic quadratic mixed 0–1 relaxations. The inequalities exploit the submodularity of the binary restrictions and are based on the polymatroid inequalities over binaries for the diagonal case. We prove that the convex inequalities completely describe the convex hull of a single conic quadratic constraint as well as the rotated cone constraint over binary variables and unbounded continuous variables. We then generalize and strengthen the inequalities by incorporating additional constraints of the optimization problem. Computational experiments on mean-risk optimization with correlations, assortment optimization, and robust conic quadratic optimization indicate that the new inequalities strengthen the convex relaxations substantially and lead to significant performance improvements.  more » « less
Award ID(s):
1818700
NSF-PAR ID:
10188591
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Operations Research
Volume:
68
Issue:
2
ISSN:
0030-364X
Page Range / eLocation ID:
609-630
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We consider the convex quadratic optimization problem in$$\mathbb {R}^{n}$$Rnwith indicator variables and arbitrary constraints on the indicators. We show that a convex hull description of the associated mixed-integer set in an extended space with a quadratic number of additional variables consists of an$$(n+1) \times (n+1)$$(n+1)×(n+1)positive semidefinite constraint (explicitly stated) and linear constraints. In particular, convexification of this class of problems reduces to describing a polyhedral set in an extended formulation. While the vertex representation of this polyhedral set is exponential and an explicit linear inequality description may not be readily available in general, we derive a compact mixed-integer linear formulation whose solutions coincide with the vertices of the polyhedral set. We also give descriptions in the original space of variables: we provide a description based on an infinite number of conic-quadratic inequalities, which are “finitely generated.” In particular, it is possible to characterize whether a given inequality is necessary to describe the convex hull. The new theory presented here unifies several previously established results, and paves the way toward utilizing polyhedral methods to analyze the convex hull of mixed-integer nonlinear sets.

     
    more » « less
  2. This paper studies two‐stage lot‐sizing problems with uncertain demand, where lost sales, backlogging and no backlogging are all considered. To handle the ambiguity in the probability distribution of demand, distributionally robust models are established only based on mean‐covariance information about the distribution. Based on shortest path reformulations of lot‐sizing problems, we prove that robust solutions can be obtained by solving mixed 0‐1 conic quadratic programs (CQPs) with mean‐risk objective functions. An exact parametric optimization method is proposed by further reformulating the mixed 0‐1 CQPs as single‐parameter quadratic shortest path problems. Rather than enumerating all potential values of the parameter, which may be the super‐polynomial in the number of decision variables, we propose a branch‐and‐bound‐based interval search method to find the optimal parameter value. Polynomial time algorithms for parametric subproblems with both uncorrelated and partially correlated demand distributions are proposed. Computational results show that the proposed models greatly reduce the system cost variation at the cost of a relative smaller increase in expected system cost, and the proposed parametric optimization method is much more efficient than the CPLEX solver.

     
    more » « less
  3. Abstract

    In this paper, we study the convex quadratic optimization problem with indicator variables. For the$${2\times 2}$$2×2case, we describe the convex hull of the epigraph in the original space of variables, and also give a conic quadratic extended formulation. Then, using the convex hull description for the$${2\times 2}$$2×2case as a building block, we derive an extended SDP relaxation for the general case. This new formulation is stronger than other SDP relaxations proposed in the literature for the problem, including the optimal perspective relaxation and the optimal rank-one relaxation. Computational experiments indicate that the proposed formulations are quite effective in reducing the integrality gap of the optimization problems.

     
    more » « less
  4. Mirrokni, V (Ed.)
    Signal estimation problems with smoothness and sparsity priors can be naturally modeled as quadratic optimization with L0-“norm” constraints. Since such problems are non-convex and hard-to-solve, the standard approach is, instead, to tackle their convex surrogates based on L1-norm relaxations. In this paper, we propose new iterative (convex) conic quadratic relaxations that exploit not only the L0-“norm” terms, but also the fitness and smoothness functions. The iterative convexification approach substantially closes the gap between the L0-“norm” and its L1 surrogate. These stronger relaxations lead to significantly better estimators than L1-norm approaches and also allow one to utilize affine sparsity priors. In addition, the parameters of the model and the resulting estimators are easily interpretable. Experiments with a tailored Lagrangian decomposition method indicate that the proposed iterative convex relaxations yield solutions within 1% of the exact L0-approach, and can tackle instances with up to 100,000 variables under one minute. 
    more » « less
  5. Abstract

    We study the minimization of a rank-one quadratic with indicators and show that the underlying set function obtained by projecting out the continuous variables is supermodular. Although supermodular minimization is, in general, difficult, the specific set function for the rank-one quadratic can be minimized in linear time. We show that the convex hull of the epigraph of the quadratic can be obtained from inequalities for the underlying supermodular set function by lifting them into nonlinear inequalities in the original space of variables. Explicit forms of the convex-hull description are given, both in the original space of variables and in an extended formulation via conic quadratic-representable inequalities, along with a polynomial separation algorithm. Computational experiments indicate that the lifted supermodular inequalities in conic quadratic form are quite effective in reducing the integrality gap for quadratic optimization with indicators.

     
    more » « less