skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Submodularity in Conic Quadratic Mixed 0–1 Optimization
We describe strong convex valid inequalities for conic quadratic mixed 0–1 optimization. These inequalities can be utilized for solving numerous practical nonlinear discrete optimization problems from value-at-risk minimization to queueing system design, from robust interdiction to assortment optimization through appropriate conic quadratic mixed 0–1 relaxations. The inequalities exploit the submodularity of the binary restrictions and are based on the polymatroid inequalities over binaries for the diagonal case. We prove that the convex inequalities completely describe the convex hull of a single conic quadratic constraint as well as the rotated cone constraint over binary variables and unbounded continuous variables. We then generalize and strengthen the inequalities by incorporating additional constraints of the optimization problem. Computational experiments on mean-risk optimization with correlations, assortment optimization, and robust conic quadratic optimization indicate that the new inequalities strengthen the convex relaxations substantially and lead to significant performance improvements.  more » « less
Award ID(s):
1818700
PAR ID:
10188591
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Operations Research
Volume:
68
Issue:
2
ISSN:
0030-364X
Page Range / eLocation ID:
609-630
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We consider the convex quadratic optimization problem in$$\mathbb {R}^{n}$$ R n with indicator variables and arbitrary constraints on the indicators. We show that a convex hull description of the associated mixed-integer set in an extended space with a quadratic number of additional variables consists of an$$(n+1) \times (n+1)$$ ( n + 1 ) × ( n + 1 ) positive semidefinite constraint (explicitly stated) and linear constraints. In particular, convexification of this class of problems reduces to describing a polyhedral set in an extended formulation. While the vertex representation of this polyhedral set is exponential and an explicit linear inequality description may not be readily available in general, we derive a compact mixed-integer linear formulation whose solutions coincide with the vertices of the polyhedral set. We also give descriptions in the original space of variables: we provide a description based on an infinite number of conic-quadratic inequalities, which are “finitely generated.” In particular, it is possible to characterize whether a given inequality is necessary to describe the convex hull. The new theory presented here unifies several previously established results, and paves the way toward utilizing polyhedral methods to analyze the convex hull of mixed-integer nonlinear sets. 
    more » « less
  2. Mirrokni, V (Ed.)
    Signal estimation problems with smoothness and sparsity priors can be naturally modeled as quadratic optimization with L0-“norm” constraints. Since such problems are non-convex and hard-to-solve, the standard approach is, instead, to tackle their convex surrogates based on L1-norm relaxations. In this paper, we propose new iterative (convex) conic quadratic relaxations that exploit not only the L0-“norm” terms, but also the fitness and smoothness functions. The iterative convexification approach substantially closes the gap between the L0-“norm” and its L1 surrogate. These stronger relaxations lead to significantly better estimators than L1-norm approaches and also allow one to utilize affine sparsity priors. In addition, the parameters of the model and the resulting estimators are easily interpretable. Experiments with a tailored Lagrangian decomposition method indicate that the proposed iterative convex relaxations yield solutions within 1% of the exact L0-approach, and can tackle instances with up to 100,000 variables under one minute. 
    more » « less
  3. We study the polyhedral convex hull structure of a mixed-integer set which arises in a class of cardinality-constrained concave submodular minimization problems. This class of problems has an objective function in the form of $f(a^Tx)$, where f is a univariate concave function, a is a non-negative vector, and x is a binary vector of appropriate dimension. Such minimization problems frequently appear in applications that involve risk-aversion or economies of scale. We propose three classes of strong valid linear inequalities for this convex hull and specify their facet conditions when a has two distinct values. We show how to use these inequalities to obtain valid inequalities for general a that contains multiple values. We further provide a complete linear convex hull description for this mixed-integer set when a contains two distinct values and the cardinality constraint upper bound is two. Our computational experiments on the mean-risk optimization problem demonstrate the effectiveness of the proposed inequalities in a branch-and-cut framework. 
    more » « less
  4. Bayesian Networks (BNs) represent conditional probability relations among a set of random variables (nodes) in the form of a directed acyclic graph (DAG), and have found diverse applications in knowledge discovery. We study the problem of learning the sparse DAG structure of a BN from continuous observational data. The central problem can be modeled as a mixed-integer program with an objective function composed of a convex quadratic loss function and a regularization penalty subject to linear constraints. The optimal solution to this mathematical program is known to have desirable statistical properties under certain conditions. However, the state-of-the-art optimization solvers are not able to obtain provably optimal solutions to the existing mathematical formulations for medium-size problems within reasonable computational times. To address this difficulty, we tackle the problem from both computational and statistical perspectives. On the one hand, we propose a concrete early stopping criterion to terminate the branch-and-bound process in order to obtain a near-optimal solution to the mixed-integer program, and establish the consistency of this approximate solution. On the other hand, we improve the existing formulations by replacing the linear “big-M " constraints that represent the relationship between the continuous and binary indicator variables with second-order conic constraints. Our numerical results demonstrate the effectiveness of the proposed approaches. 
    more » « less
  5. Problem definition: Data analytics models and machine learning algorithms are increasingly deployed to support consequential decision-making processes, from deciding which applicants will receive job offers and loans to university enrollments and medical interventions. However, recent studies show these models may unintentionally amplify human bias and yield significant unfavorable decisions to specific groups. Methodology/results: We propose a distributionally robust classification model with a fairness constraint that encourages the classifier to be fair in the equality of opportunity criterion. We use a type-[Formula: see text] Wasserstein ambiguity set centered at the empirical distribution to represent distributional uncertainty and derive a conservative reformulation for the worst-case equal opportunity unfairness measure. We show that the model is equivalent to a mixed binary conic optimization problem, which standard off-the-shelf solvers can solve. We propose a convex, hinge-loss-based model for large problem instances whose reformulation does not incur binary variables to improve scalability. Moreover, we also consider the distributionally robust learning problem with a generic ground transportation cost to hedge against the label and sensitive attribute uncertainties. We numerically examine the performance of our proposed models on five real-world data sets related to individual analysis. Compared with the state-of-the-art methods, our proposed approaches significantly improve fairness with negligible loss of predictive accuracy in the testing data set. Managerial implications: Our paper raises awareness that bias may arise when predictive models are used in service and operations. It generally comes from human bias, for example, imbalanced data collection or low sample sizes, and is further amplified by algorithms. Incorporating fairness constraints and the distributionally robust optimization (DRO) scheme is a powerful way to alleviate algorithmic biases. Funding: This work was supported by the National Science Foundation [Grants 2342505 and 2343869] and the Chinese University of Hong Kong [Grant 4055191]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2022.0230 . 
    more » « less