skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Molecular simulations of analyte partitioning and diffusion in liquid crystal sensors
Chemoresponsive liquid crystal (LC) sensors are promising platforms for the detection of vapor-phase analytes. Understanding the transport of analyte molecules within LC films could guide the design of LC sensors with improved selectivity. In this work, we use molecular dynamics simulations to quantify the partitioning and diffusion of nine small-molecule analytes, including four common atmospheric pollutants, in model systems representative of LC sensors. We first parameterize all-atom models for 4-cyano-4′-pentylbiphenyl (5CB), a mesogen typically used for LC sensors, and all analytes. We validate these models by reproducing experimentally determined 5CB structural parameters, 5CB diffusivity, and analyte Henry's law constants in 5CB. Using the all-atom models, we calculate analyte solvation free energies and diffusivities in bulk 5CB. These simulation-derived quantities are then used to parameterize an analytical mass-transport model to predict sensor activation times. These results demonstrate that differences in analyte–LC interactions can translate into distinct activation times to distinguish activation by different analytes. Finally, we quantify the effect of LC composition by calculating analyte solvation free energies in TL205, a proprietary LC mixture. These calculations indicate that varying the LC composition can modulate activation times to further improve sensor selectivity. These results thus provide a computational framework for guiding LC sensor design by using molecular simulations to predict analyte transport as a function of LC composition.  more » « less
Award ID(s):
1837812
PAR ID:
10188704
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Molecular Systems Design & Engineering
Volume:
5
Issue:
1
ISSN:
2058-9689
Page Range / eLocation ID:
304 to 316
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Analysis of single nucleotide variations (SNVs) in DNA and RNA sequences is instrumental in healthcare for the detection of genetic and infectious diseases and drug-resistant pathogens. Here we took advantage of the developments in DNA nanotechnology to design a hybridization sensor, named the ‘owl sensor’, which produces a fluorescence signal only when it complexes with fully complementary DNA or RNA analytes. The novelty of the owl sensor operation is that the selectivity of analyte recognition is, at least in part, determined by the structural rigidity and stability of the entire DNA nanostructure rather than exclusively by the stability of the analyte–probe duplex, as is the case for conventional hybridization probes. Using two DNA and two RNA analytes we demonstrated that owl sensors differentiate SNVs in a wide temperature range of 5 °C–32 °C, a performance unachievable by conventional hybridization probes including the molecular beacon probe. The owl sensor reliably detects cognate analytes even in the presence of 100 times excess of single base mismatched sequences. The approach, therefore, promises to add to the toolbox for the diagnosis of SNVs at ambient temperatures. 
    more » « less
  2. Hybridization probes have been used to detect specific nucleic acids for the last 50 years. These probes have applications in medicine, including identifying disease-causing genes or multi-drug resistant bacteria. To be considered robust, a probe should have high selectivity at ambient or low temperatures, be able to detect folded analytes, and remain economical for use in clinical settings. This work will uncover a challenge faced by molecular beacon probes (MBP), describe an adaptation to a molecular beacon probe (MBP) that enables the hybridization of the probe to a folded target, a multicomponent DNA sensor (OWL2) that overcomes common challenges faced by hybridization probes, and a thresholding sensor (MB-Th) that allows for the quantification of microRNA. Through the use of unwinding arms, the MBP adaptation and OWL2 sensor are able to hybridize with and detect folded analytes. Additionally, the OWL2 sensor contains two analyte-binding arms to unwind folded analytes and two sequence-specific strands that bind both the analyte and a universal molecular beacon (UMB) probe to form a fluorescent ‘OWL’ structure. The sensor can differentiate single base mismatches in folded analytes in the temperature range of 5–38 °C, even when challenged with excess wild-type analytes. The MB-Th sensor consists of two gates with increasing affinity for the target, with each varying in thermodynamic stability. The gates bind to separate molecular beacons, each with a unique fluorophore, and produce distinct signals that can be measured simultaneously. Both sensor designs are cost-efficient since the same UMB probe can be used to detect any analyte sequence. These sensors have significant clinical benefits for the diagnosis of non-invasive early-stage cancer and cancers associated with miRNA dysregulation. iv 
    more » « less
  3. Nontarget analysis using liquid chromatography–high resolution mass spectrometry (LC–HRMS) is a valuable approach in characterizing for contaminants of emerging concern (CECs) in the environment. However, identification of these analytes can be quite costly or taxing without proper analytical standards. To circumvent this problem we utilize Quantitative structure-retention relationships (QSRR) models to predict elution order and retention times. Properties calculated from density functional theory (DFT) and the conductor-like screening model for real solvents (COSMO-RS) theory are used to produce our QSRR models, which can be calculated for virtually any analyte. We show that this methodology has been successful in identification of per- /poly-fluoroalkyl substances (PFAS) and other contaminants. Nontarget analysis using liquid chromatography– high resolution mass spectrometry (LC–HRMS) is a valuable approach in characterizing for contaminants of emerging concern (CECs) in the environment. However, identification of these analytes can be quite costly or taxing without proper analytical standards. To circumvent this problem we utilize Quantitative structureretention relationships (QSRR) models to predict elution order and retention times. Properties calculated from density functional theory (DFT) and the conductor-like screening model for real solvents (COSMO-RS) theory are used to produce our QSRR models, which can be calculated for virtually any analyte. We show that this methodology has been 
    more » « less
  4. We report a combined theoretical and experimental effort to elucidate systematically for the first time the influence of anions of transition metal salt-decorated surfaces on the orientations of supported films of nematic liquid crystals (LCs) and adsorbate-induced orientational transitions of these LC films. Guided by computational chemistry predictions, we find that nitrate anions weaken the binding of 4′- n -pentyl-4-biphenylcarbonitrile (5CB) to transition metal cations, as compared to perchlorate salts, although binding is still sufficiently strong to induce homeotropic (perpendicular) orientations of 5CB. In addition, we find the orientations of the LC to be correlated across all metal cations investigated by a molecular anchoring energy density that is calculated as the product of the single-site binding energy and metal cation binding site density on the surface. The weaker single-site binding energy caused by nitrate also facilitates competitive binding of adsorbates to the metal cations, leading to more facile orientational transitions induced by adsorbates. Finally, our analysis suggests that nitrate anions recruit water via hydrogen bonding to the metal binding sites, modulating further the relative net binding energies of 5CB and adsorbates to surfaces decorated with metal nitrates. After accounting for the presence of water, we find a universal exponential relationship between the calculated displacement free energies and measured dynamic response of LCs to adsorbates for all metal salts studied, independent of the metal salt anion. 
    more » « less
  5. Hybridization probes have been used in the detection of specific nucleic acids for the last 50 years. Despite the extensive efforts and the great significance, the challenges of the commonly used probes include (1) low selectivity in detecting single nucleotide variations (SNV) at low ( e.g. room or 37 °C) temperatures; (2) low affinity in binding folded nucleic acids, and (3) the cost of fluorescent probes. Here we introduce a multicomponent hybridization probe, called OWL2 sensor, which addresses all three issues. The OWL2 sensor uses two analyte binding arms to tightly bind and unwind folded analytes, and two sequence-specific strands that bind both the analyte and a universal molecular beacon (UMB) probe to form fluorescent ‘OWL’ structure. The OWL2 sensor was able to differentiate single base mismatches in folded analytes in the temperature range of 5–38 °C. The design is cost-efficient since the same UMB probe can be used for detecting any analyte sequence. 
    more » « less