skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Content Extraction from Lecture Video via Speaker Action Classification Based on Pose Information
Online lecture videos are increasingly important e-learning materials for students. Automated content extraction from lecture videos facilitates information retrieval applications that improve access to the lecture material. A significant number of lecture videos include the speaker in the image. Speakers perform various semantically meaningful actions during the process of teaching. Among all the movements of the speaker, key actions such as writing or erasing potentially indicate important features directly related to the lecture content. In this paper, we present a methodology for lecture video content extraction using the speaker actions. Each lecture video is divided into small temporal units called action segments. Using a pose estimator, body and hands skeleton data are extracted and used to compute motion-based features describing each action segment. Then, the dominant speaker action of each of these segments is classified using Random forests and the motion-based features. With the temporal and spatial range of these actions, we implement an alternative way to draw key-frames of handwritten content from the video. In addition, for our fixed camera videos, we also use the skeleton data to compute a mask of the speaker writing locations for the subtraction of the background noise from the binarized key-frames. Our method has been tested on a publicly available lecture video dataset, and it shows reasonable recall and precision results, with a very good compression ratio which is better than previous methods based on content analysis.  more » « less
Award ID(s):
1640867
PAR ID:
10188706
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2019 International Conference on Document Analysis and Recognition (ICDAR)
Page Range / eLocation ID:
1047 to 1054
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Del Bimbo, Alberto; Cucchiara, Rita; Sclaroff, Stan; Farinella, Giovanni M; Mei, Tao; Bertini, Marco; Escalante, Hugo J; Vezzani, Roberto. (Ed.)
    The volume of online lecture videos is growing at a frenetic pace. This has led to an increased focus on methods for automated lecture video analysis to make these resources more accessible. These methods consider multiple information channels including the actions of the lecture speaker. In this work, we analyze two methods that use spatio-temporal features of the speaker skeleton for action classification in lecture videos. The first method is the AM Pose model which is based on Random Forests with motion-based features. The second is a state-of-the-art action classifier based on a two-stream adaptive graph convolutional network (2S-AGCN) that uses features of both joints and bones of the speaker skeleton. Each video is divided into fixed-length temporal segments. Then, the speaker skeleton is estimated on every frame in order to build a representation for each segment for further classification. Our experiments used the AccessMath dataset and a novel extension which will be publicly released. We compared four state-of-the-art pose estimators: OpenPose, Deep High Resolution, AlphaPose and Detectron2. We found that AlphaPose is the most robust to the encoding noise found in online videos. We also observed that 2S-AGCN outperforms the AM Pose model by using the right domain adaptations. 
    more » « less
  2. Lee, Kyoung Mu (Ed.)
    This paper presents a novel spatiotemporal transformer network that introduces several original components to detect actions in untrimmed videos. First, the multi-feature selective semantic attention model calculates the correlations between spatial and motion features to model the spatiotemporal interactions between different action semantics properly. Second, the motion-aware network encodes the locations of action semantics in video frames utilizing the motion-aware 2D positional encoding algorithm. Such a motion-aware mechanism memorizes the dynamic spatiotemporal variations in action frames that current methods cannot exploit. Third, the sequence-based temporal attention model captures the heterogeneous temporal dependencies in action frames. In contrast to standard temporal attention used in natural language processing, primarily aimed at finding similarities between linguistic words, the proposed sequence-based temporal attention is designed to determine both the differences and similarities between video frames that jointly define the meaning of actions. The proposed approach outperforms the state-of-the-art solutions on four spatiotemporal action datasets: AVA 2.2, AVA 2.1, UCF101-24, and EPIC-Kitchens. 
    more » « less
  3. This paper introduces a novel transformer network tailored to skeleton-based action detection in untrimmed long video streams. Our approach centers around three innovative mechanisms that collectively enhance the network’s temporal analysis capabilities. First, a new predictive attention mechanism incorporates future frame data into the sequence analysis during the training phase. This mechanism addresses the essential issue of the current action detection models: incomplete temporal modeling in long action sequences, particularly for boundary frames that lie outside the network’s immediate temporal receptive field, while maintaining computational efficiency. Second, we integrate a new adaptive weighted temporal attention system that dynamically evaluates the importance of each frame within an action sequence. In contrast to the existing approaches, the proposed weighting strategy is both adaptive and interpretable, making it highly effective in handling long sequences with numerous non-informative frames. Third, the network incorporates an advanced regression technique. This approach independently identifies the start and end frames based on their relevance to different frames. Unlike existing homogeneous regression methods, the proposed regression method is heterogeneous and based on various temporal relationships, including those in future frames in actions, making it more effective for action detection. Extensive experiments on prominent untrimmed skeleton-based action datasets, PKU-MMD, OAD, and the Charade dataset demonstrate the effectiveness of this network. 
    more » « less
  4. Understanding human behavior and activity facilitates advancement of numerous real-world applications, and is critical for video analysis. Despite the progress of action recognition algorithms in trimmed videos, the majority of real-world videos are lengthy and untrimmed with sparse segments of interest. The task of temporal activity detection in untrimmed videos aims to localize the temporal boundary of actions and classify the action categories. Temporal activity detection task has been investigated in full and limited supervision settings depending on the availability of action annotations. This paper provides an extensive overview of deep learning-based algorithms to tackle temporal action detection in untrimmed videos with different supervision levels including fully-supervised, weakly-supervised, unsupervised, self-supervised, and semi-supervised. In addition, this paper reviews advances in spatio-temporal action detection where actions are localized in both temporal and spatial dimensions. Action detection in online setting is also reviewed where the goal is to detect actions in each frame without considering any future context in a live video stream. Moreover, the commonly used action detection benchmark datasets and evaluation metrics are described, and the performance of the state-of-the-art methods are compared. Finally, real-world applications of temporal action detection in untrimmed videos and a set of future directions are discussed. 
    more » « less
  5. In this paper, we propose a machine learning-based multi-stream framework to recognize American Sign Language (ASL) manual signs and nonmanual gestures (face and head movements) in real time from RGB-D videos. Our approach is based on 3D Convolutional Neural Networks (3D CNNs) by fusing the multi-modal features including hand gestures, facial expressions, and body poses from multiple channels (RGB, Depth, Motion, and Skeleton joints). To learn the overall temporal dynamics in a video, a proxy video is generated by selecting a subset of frames for each video which are then used to train the proposed 3D CNN model. We collected a new ASL dataset, ASL-100-RGBD, which contains 42 RGB-D videos captured by a Microsoft Kinect V2 camera. Each video consists of 100 ASL manual signs, along with RGB channel, Depth maps, Skeleton joints, Face features, and HD face. The dataset is fully annotated for each semantic region (i.e. the time duration of each sign that the human signer performs). Our proposed method achieves 92.88% accuracy for recognizing 100 ASL sign glosses in our newly collected ASL-100-RGBD dataset. The effectiveness of our framework for recognizing hand gestures from RGB-D videos is further demonstrated on a large-scale dataset, ChaLearn IsoGD, achieving the state-of-the-art results. 
    more » « less