skip to main content


Title: Thermodynamic Modeling of the Tso Morari UHP Eclogite, NW Himalaya
Thermodynamic modeling is an important technique to interpret metamorphic phase relations and calculate model pressure-temperature (P-T) paths for metamorphic rocks. This study uses representative, coesite-bearing eclogites from the Tso Morari UHP terrane of the NW Himalaya to simulate its prograde metamorphism using multiple modeling programs and thermobarometry. Our modeling yields a peak metamorphism P-T of ~32-33 kbar and ~560-570 °C by the THERMOCALC345 and Theriak-Domino programs (Green et al., 2016), which is ~5 kbar higher in pressure and ~15 °C lower in temperature than that determined by using THERMOCALC333 (White et al., 2007) (~27.8 kbar and ~580 °C). The significantly higher pressure obtained using the THERMOCALC345 and Theriak-Domino is likely a result of the upgrade of thermodynamic parameters of minerals (i.e. garnet Wpy-gr and agr) in the newer a-x relations. The modeled effective bulk compositions and mineral stabilities along the calculated P-T path show different patterns under the two modeling techniques. Modeling by the Theriak-Domino programs is preferred in this case because the results are more consistent with the measured mineral compositions of our rocks. Multiple thermobarometers by garnet-omphacite-phengite, garnet-omphacite, garnet-phengite on the garnet rim, high-Si phengite and matrix omphacite yield a peak metamorphism of ~ 28.5-29.0 kbar and ~ 650-728 °C, which is generally consistent with the modeled P-T path. Based on our model calculations, the initial bulk composition measured by XRF does not represent the reactant bulk composition at the time of garnet nucleation, and this compositional discrepancy possibly is caused by the crystallization of pre-garnet minerals (i.e. hematite), reaction overstepping, or partial reequilibration. In summary, by implementing and evaluating multiple modeling strategies and considering the petrography and metamorphic mineralogy of the rocks, this study finds that the eclogite modeling using Theriak-Domino programs in the Tso Morari terrane provide more consistent metamorphic phase relations and more reasonable thermodynamic simulations regarding fractionation of the bulk composition and prograde metamorphism. References: Green et al. J Metamorph Geol 34, 845-869 (2016) White et al. J Metamorph Geol 25, 511-527 (2007)  more » « less
Award ID(s):
1822524
NSF-PAR ID:
10188777
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
AGU Fall Meeting 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Tso Morari terrane within the Himalayan orogeny underwent ultrahigh-pressure (UHP) metamorphism due to northward subduction under the Eurasian continent during the early Eocene. The advancement of computational petrology and availability of relevant thermodynamic databases provide the mechanism to more precisely quantify metamorphic processes. In this study, we model the eclogite’s prograde pressure-temperature (P-T) path as well as multiple fluid infiltration events during exhumation using Theriak-Domino with dataset ds62 and garnet[1] and other metabasic mineral activity-composition relations. The effect of garnet fractionation on the rock’s effective bulk composition is considered in simulating prograde garnet growth. A “fishhook” shape clockwise P-T path is obtained with a peak pressure of ~28.5 kbar at ~563 °C, followed by a peak temperature of ~613 °C at ~24.5 kbar[2]. Thermodynamic modelling using P-M(H2O) pseudosections on Tso Morari eclogites indicates three distinct phases of fluid infiltration during exhumation. Fluid infiltration Ⅰ occurs at ~610 °C and ~23.5 kbar with ~3.1 mol % fluid expulsion due to the destabilization of lawsonite. The modelling results are consistent with petrographic observations in the eclogite: we found ~6.0 vol % epidote and ~21.0 vol % amphibole and the possible pre-existence of lawsonite evidenced by its pseudomorph (as epidote and paragonite aggregates) in a garnet core and rim[3], and CNASH modelling on the epidote and its inclusion paragonite. Fluid infiltration Ⅱ occurs at ~9.2 kbar and ~608 °C with >2.6 mol % fluid infiltration at amphibolite-facies. This phase of fluid infiltration is characterized by aggressive amphibolization from the boudin core to rim. Fluid infiltration Ⅲ occurs at ~610 °C and ~8.7 kbar, caused by breakdown of phengite as predicted through modelling the symplectitic association (plagioclase, biotite, and amphibole) surrounding omphacite. In summary, this study not only illustrates the application of thermodynamic modelling in quantifying metamorphic processes, but also the need of comparison between modeling predictions and petrographic observations. [1] White et al. (2007), J Metamorph Geol 25, 511–527. [2] Pan et al. (2020), Contrib Mineral Petrol 175, 1–28. [3] St-Onge et al. (2013), J Metamorph Geol 31, 469–504. 
    more » « less
  2. Ultra-high pressure (UHP) metamorphism of the Tso Morari coesite-eclogite during burial in NW Himalaya has been intensively studied over the past several decades. However, amphibolite-facies metamorphism and accompanying metasomatism occurring at lower-crustal depths in the Tso Morari terrane are less well-constrained. In this study, we characterize the eclogite amphibolization and related metasomatic fluids by systematically sampling and analyzing the eclogites at the core of an eclogite boudin and the amphiblolized eclogite (amphibolite) at the rim. Integrated techniques including modal mineralogy, mineral chemistry, whole-rock geochemistry, Mössbauer spectroscopy, and thermodynamic modelling are used to constrain the fluid-induced eclogite amphibolization and associated fluid behaviors. Petrographic observations show that infiltration of an external fluid caused complete amphibolite-facies overprinting of the eclogites at the boudin rim. This is recorded petrographically as increased modal proportions of amphibole, biotite, epidote, plagioclase, and calcite in the amphibolites. The infiltrating fluid caused increased K2O and CO2 concentrations and higher bulk-rock Fe3+/ΣFe ratio for the amphibolites, as well as increased LILE (e.g., K, Rb, Cs, Sr, Ba) and ratios of Ba/Rb and Cs/Rb. Phase equilibria modelling using P–T–M(H2O) pseudosections on the amphibolite and the surrounding gneiss indicate that the fluid infiltration occurred at 9.0–12.5 kbar and ~608 °C with >2.6–3.1 mol % H2O infiltration. The abrupt increase of bulk-rock Fe3+/ΣFe ratio from 0.192 to 0.395 near the boudin rim indicate that this phase of fluid most likely derived from the mixing of dehydrated host orthogneiss and/or metasediments during uplift at the amphibolite-facies zone in the subduction channel. This study also demonstrates the need for using careful petrographic observations and geochemical analysis in parallel with thermodynamic modelling to achieve realistic results. 
    more » « less
  3. Mica- and garnet-rich selvages are often developed around eclogitized mafic blocks within felsic gneiss in HP to UHP metamorphic terranes. The development of these metasomatic features ranges from readily identified reaction zones between the eclogite and host gneiss to shear zones where the spatial relationships between eclogite blocks and host gneiss are completely obscured. Block-selvage relationships within the Luliang Shan HP/UHP belt (North Qaidam, China) and the Tso Morari UHP terrane (NW Himalaya, India) approximate end members of the selvage preservation process. Here we apply whole-rock and incompatible trace element compositions coupled with B and O isotopic data in white mica to constrain the relationship of metasomatism vs. deformation during selvage formation. Within the Luliang Shan, extensive fluid flow formed thick, compositionally hybridized phengite- and garnet-bearing selvages between eclogite (SiO2 ~ 50%) and quartzofeldspathic gneiss (SiO2 ~ 80%). The Luliang Shan HP selvages have intermediate SiO2 and range from 5-10 m in thickness as "halos" around spheroidal eclogite blocks. Volatile enrichment at near-UHP conditions in the selvage is indicated by enrichment of Li, Cs, Ba, Ar, and δ18O and very light δ11B values in phengite. The retrograde muscovite from the host gneiss is low in Li, Cs, Rb, and Sr but possess remarkably high B concentrations (up to 3000 ppm) and positive δ11B values that are best explained by interaction with fluids devolatilized from accreted sediments within cooler regions of the subduction zone. Alternatively, the Tso Morari UHP terrane features boudinaged discoids of eclogite encased within highly strained quartzofeldspathic gneiss. Whole rock major element sampling performed normal to the foliation reveal consistently high SiO2 (78-80%). Highly variable degrees of metasomatic recrystallization occur within the phengite-rich rocks spatially associated with eclogite. The selvage rocks exhibit heterogeneous degrees of enrichment in Li, Be, B, and Ba and yield δ11B values of -4 to -6‰ typical of undevolatilized oceanic and continental crust. We conclude that fluid-mediated metasomatic reaction between eclogite and gneiss at Tso Morari is sheared out into lenses that are incorporated into, and heterogeneously distributed throughout, the host gneiss. 
    more » « less
  4. Abstract

    The Pamir gneiss domes represent the most extensive exposure of mid to lower crustal rocks in the Himalayan‐Tibetan orogen north of the India‐Asia suture zone. Unlike other domes in the Central and Southern Pamir, the Muztaghata dome stands out due to its higher metamorphic grade, more complex structural elements, and variable timing of metamorphism. In order to unravel the P‐T‐t history of the Muztaghata dome and better constrain the timing of peak metamorphism, we applied petrologic modeling in concert with geochronology to samples from the structure. The Muztaghata gneiss dome is composed of a structurally higher metapelite‐dominated terrane in the west and a structurally lower orthogneiss terrane in the east. Our results from the western terrane indicate high‐pressure eclogite facies peak conditions of ~800°C/22 kbar at ~25–20 Ma. Zircon grains from metapelitic samples from the western terrane also yield Early Jurassic metamorphic U‐Pb ages with REE signals that indicate coeval garnet growth. Our results from the eastern terrane record high‐pressure amphibolite facies peak conditions of ~650°C/14 kbar at ~24–20 Ma, noticeably lower than the structurally higher western terrane indicating structural juxtaposition during Miocene exhumation. Peak metamorphic conditions from the eastern terrane indicate depths below the current Moho, supporting the interpretation that the Early Miocene Pamir crust was thicker than present. This was followed by rapid exhumation from depths of ~75–80 km and partial westward collapse of the Pamir after 20 Ma, possibly driven in part by regional lithospheric delamination.

     
    more » « less
  5. We quantify the metamorphic pressure-temperature (P-T) conditions for a newly discovered silica-undersaturated high-pressure granulite (HPG) from the Central Maine Terrane (CMT) in northeastern Connecticut, U.S.A. The rocks lie within the Acadian-Neoacadian orogenic belt (Devonian) and form part of the Brimfield Schist. The Brimfield and the adjacent Bigelow Brook Formation contain silica-saturated rocks that have previously been shown to have undergone ~1000 °C metamorphism. The pressure was less well constrained at ≥ ~1 GPa. Silica-undersaturated rocks hold underutilized potential for pinpointing peak metamorphic conditions, particularly pressure, because of their resilience to melting and the variety of refractory minerals they contain. The typical silica-undersaturated mineral assemblage is garnet + spinel + corundum + plagioclase + K-feldspar + biotite + ilmenite. Leucosomes are syenites consisting of two feldspars ± biotite. Plagioclase is commonly antiperthitic, particularly in feldspathic domains surrounding peritectic garnet; such garnet crystals reach ~10 cm in diameter. Alkali feldspars are perthitic. The rocks contain remarkable ellipsoidal spinels as much as 5.5 cm long comprising discrete crystallographic domains hosting crystallographically oriented lamellae of a Fe-Ti phase, most likely ilmenite. Corundum is usually colorless, but can also be found as sapphire in shades of pink, purple, and blue, particularly in antiperthite-rich domains surrounding large garnets. Some sapphires are concentrically color zoned. We carried out a P-T estimation using ternary feldspar reintegration thermometry of metamorphic antiperthites together with pseudosection modeling. Samples texturally and chemically record near-eclogite facies equilibration at minimum conditions of ~1040 °C and ~1.8 GPa, establishing the CMT in northeastern CT as the first known HPG locality in the U.S. These results are consistent with high P2O5 levels found in garnet (0.18 wt%), Ti-in-biotite thermometry, regional sillimanite pseudomorphs after kyanite, and preliminary experimental work on melt inclusions in garnet (Ferrero et al. 2017). The leucosomes provide strong evidence that partial melting of silica-undersaturated rocks at HPG conditions can produce syenitic magmata. Strongly melt-depleted silica-undersaturated rocks may also be protoliths for garnet + spinel + corundum xenoliths reported from kimberlites. The presence of HPG gneisses demonstrates that the large-scale thrusts of the CMT sample the deepest roots of the orogenic belt (60–70 km), and perhaps even deeper subduction zone lithologies as well. 
    more » « less