skip to main content


Title: Conducting HCI Research with People Living with HIV Remotely: Lessons Learned and Best Practices
Conducting HCI research with people living with HIV in face-to-face settings can be challenging in terms of recruitment and data collection due to HIV-related stigma. In this case study, we share our experiences from conducting research remotely in two studies using the Asynchronous Remote Communities method with participants recruited from in-person and online support groups, respectively. Our findings and discussion around challenges, best practices, and lessons learned during the phases of recruitment and data collection expand and further support the suitability of the method to conduct research remotely with a highly stigmatized population.  more » « less
Award ID(s):
1909700
NSF-PAR ID:
10188802
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Social networks such as Twitter offer the clinical research community a novel opportunity for engaging potential study participants based on user activity data. However, the availability of public social media data has led to new ethical challenges about respecting user privacy and the appropriateness of monitoring social media for clinical trial recruitment. Researchers have voiced the need for involving users’ perspectives in the development of ethical norms and regulations. Objective This study examined the attitudes and level of concern among Twitter users and nonusers about using Twitter for monitoring social media users and their conversations to recruit potential clinical trial participants. Methods We used two online methods for recruiting study participants: the open survey was (1) advertised on Twitter between May 23 and June 8, 2017, and (2) deployed on TurkPrime, a crowdsourcing data acquisition platform, between May 23 and June 8, 2017. Eligible participants were adults, 18 years of age or older, who lived in the United States. People with and without Twitter accounts were included in the study. Results While nearly half the respondents—on Twitter (94/603, 15.6%) and on TurkPrime (509/603, 84.4%)—indicated agreement that social media monitoring constitutes a form of eavesdropping that invades their privacy, over one-third disagreed and nearly 1 in 5 had no opinion. A chi-square test revealed a positive relationship between respondents’ general privacy concern and their average concern about Internet research (P<.005). We found associations between respondents’ Twitter literacy and their concerns about the ability for researchers to monitor their Twitter activity for clinical trial recruitment (P=.001) and whether they consider Twitter monitoring for clinical trial recruitment as eavesdropping (P<.001) and an invasion of privacy (P=.003). As Twitter literacy increased, so did people’s concerns about researchers monitoring Twitter activity. Our data support the previously suggested use of the nonexceptionalist methodology for assessing social media in research, insofar as social media-based recruitment does not need to be considered exceptional and, for most, it is considered preferable to traditional in-person interventions at physical clinics. The expressed attitudes were highly contextual, depending on factors such as the type of disease or health topic (eg, HIV/AIDS vs obesity vs smoking), the entity or person monitoring users on Twitter, and the monitored information. Conclusions The data and findings from this study contribute to the critical dialogue with the public about the use of social media in clinical research. The findings suggest that most users do not think that monitoring Twitter for clinical trial recruitment constitutes inappropriate surveillance or a violation of privacy. However, researchers should remain mindful that some participants might find social media monitoring problematic when connected with certain conditions or health topics. Further research should isolate factors that influence the level of concern among social media users across platforms and populations and inform the development of more clear and consistent guidelines. 
    more » « less
  2. The National Science Foundation’s funded ($625,179) SPIRIT: Scholarship Program Initiative via Recruitment, Innovation, and Transformation at Western Carolina University creates a new approach to the recruitment, retention, education, and placement of academically talented and financially needy engineering and engineering technology students. Twenty-Seven new and continuing students were recruited into horizontally and vertically integrated cohorts that will be nurtured and developed in a Project Based Learning (PBL) community characterized by extensive faculty mentoring, fundamental and applied undergraduate research, hands-on design projects, and industry engagement. Our horizontal integration method creates sub-cohorts with same-year students from different disciplines (electrical, mechanical, etc.) to work in an environment that reflects how engineers work in the real world. Our vertical integration method enables sub-cohorts from different years to work together on different stages of projects in a PBL setting. The objectives of the SPIRIT program will ensure an interdisciplinary environment that enhances technical competency through learning outcomes that seek to improve critical skills such as intentional learning, problem solving, teamwork, management, interpersonal communications, and leadership. Support for the student scholars participating in this program incorporates several existing support services offered by the host institution and school, including a university product development center. This paper will discuss several aspects of the program including participant selection and initial cohort demographics; implementation of the vertical-based cohort model in PBL; program and student assessment models; and associated student activities and artifact collection used to foster student success in the program and after graduation. Successful implementation of the SPIRIT program will create a replicable model that will broadly impact 21st century engineering education and workforce preparedness. 
    more » « less
  3. With support from NSF Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM), the Culturally Adaptive Pathway to Success (CAPS) program aims to build an inclusive pathway to accelerate the graduation for academically talented, low-income students in Engineering and Computer Science majors at [University Name], which traditionally serves the underrepresented and educationally disadvantaged minority students in the [City Name area]. CAPS focuses on progressively developing social and career competence in our students via three integrated interventions: (1) Mentor+, a relationally informed advising strategy that encourages students to see their academic work in relation to their families and communities; (2) peer cohorts, providing social support structure for students and enhancing their sense of belonging in engineering and computer science classrooms and beyond; and (3) professional development from faculty who have been trained in difference-education theory, so that they can support students with varying levels of understanding of the antecedents of college success. To ensure success of these interventions, the CAPS program places great emphasis on developing culturally responsive advisement methods and training faculty mentors to facilitate creating a culture of culturally adaptive advising. This paper presents the CAPS progress in the past two project years. In particular, we will share several changes that we have made after the first project year to improve several key components of the program - recruitment, cohort building, and mentor training. The program strengthened the recruitment by actively involving scholars and faculties in reaching out to students and successfully recruited more scholars for the second cohort (16 scholars) than the first cohort (12 scholars). Also, the program has initiated new activities for peer-mentoring and cohort gathering within each major. As continuous development of the mentor training, the program has added a training session focusing on various aspects of intersectionality as it relates to individual’s social identities, and how mentors can use these knowledge to better interact with mentees. In addition to these changes, we will also report findings on how the program impacted on scholars’ academic growth and mentors’ understanding about the culturally adaptive advisement to answer the CAPS research questions (a) how these interventions affect the development of social belonging and engineering identity of CAPS scholars, and (b) the impact of Mentor+ on academic resilience and progress to degree. The program conducted qualitative data collection and analysis via focus group meetings and interviews as well as quantitative data collection and analysis using academic records and surveys. Our findings will help enhance the CAPS program and establish a sustainable Scholars Support Program at the university, which can be implemented with scholarships funded by other sources, and which can be transferred to similar culturally diverse institutions to increase success for students who have socio-economic challenges. 
    more » « less
  4. High levels of stress and anxiety are common amongst college students, particularly engineering students. Students report lack of sleep, grades, competition, change in lifestyle, and other significant stressors throughout their undergraduate education (1, 2). Stress and anxiety have been shown to negatively impact student experience (3-6), academic performance (6-8), and retention (9). Previous studies have focused on identifying factors that cause individual students stress while completing undergraduate engineering degree programs (1). However, it not well-understood how a culture of stress is perceived and is propagated in engineering programs or how this culture impacts student levels of identification with engineering. Further, the impact of student stress has not been directly considered in engineering regarding recruitment, retention, and success. Therefore, our guiding research question is: Does the engineering culture create stress for students that hinder their engineering identity development? To answer our research question, we designed a sequential mixed methods study with equal priority of quantitative survey data and qualitative individual interviews. Our study participants are undergraduate engineering students across all levels and majors at a large, public university. Our sample goal is 2000 engineering student respondents. We combined three published surveys to build our quantitative data collection instrument, including the Depression Anxiety Stress Scales (DASS), Identification with engineering subscale, and Engineering Department Inclusion Level subscale. The objective of the quantitative instrument is to illuminate individual perceptions of the existence of an engineering stress culture (ESC) and create an efficient tool to measure the impact ESC on engineering identity development. Specifically, we seek to understand the relationships among the following constructs; 1) identification with engineering, 2) stress and anxiety, and 3) feelings of inclusion within their department. The focus of this paper presents the results of the pilot of the proposed instrument with 20 participants and a detailed data collection and analysis process. In an effort to validate our instrument, we conducted a pilot study to refine our data collection process and the results will guide the data collection for the larger study. In addition to identifying relationships among construct, the survey data will be further analyzed to specify which demographics are mediating or moderating factors of these relationships. For example, does a student’s 1st generation status influence their perception of stress or engineering identity development? Our analysis may identify discipline-specific stressors and characterize culture components that promote student anxiety and stress. Our objective is to validate our survey instrument and use it to inform the protocol for the follow-up interviews to gain a deeper understanding of the responses to the survey instrument. Understanding what students view as stressful and how students identify stress as an element of program culture will support the development of interventions to mitigate student stress. References 1. Schneider L (2007) Perceived stress among engineering students. A Paper Presented at St. Lawrence Section Conference. Toronto, Canada. Retrieved from: www. asee. morrisville. edu. 2. Ross SE, Niebling BC, & Heckert TM (1999) Sources of stress among college students. Social psychology 61(5):841-846. 3. Goldman CS & Wong EH (1997) Stress and the college student. Education 117(4):604-611. 4. Hudd SS, et al. (2000) Stress at college: Effects on health habits, health status and self-esteem. College Student Journal 34(2):217-228. 5. Macgeorge EL, Samter W, & Gillihan SJ (2005) Academic Stress, Supportive Communication, and Health A version of this paper was presented at the 2005 International Communication Association convention in New York City. Communication Education 54(4):365-372. 6. Burt KB & Paysnick AA (2014) Identity, stress, and behavioral and emotional problems in undergraduates: Evidence for interaction effects. Journal of college student development 55(4):368-384. 7. Felsten G & Wilcox K (1992) Influences of stress and situation-specific mastery beliefs and satisfaction with social support on well-being and academic performance. Psychological Reports 70(1):291-303. 8. Pritchard ME & Wilson GS (2003) Using emotional and social factors to predict student success. Journal of college student development 44(1):18-28. 9. Zhang Z & RiCharde RS (1998) Prediction and Analysis of Freshman Retention. AIR 1998 Annual Forum Paper. 
    more » « less
  5. In March 2020, the global COVID-19 pandemic forced universities across the United States to immediately stop face-to-face activities and transition to virtual instruction. While this transition was not easy for anyone, the shift to online learning was especially difficult for STEM courses, particularly engineering, which has a strong practical/laboratory component. Additionally, underrepresented students (URMs) in engineering experienced a range of difficulties during this transition. The purpose of this paper is to highlight underrepresented engineering students’ experiences as a result of COVID-19. In particular, we aim to highlight stories shared by participants who indicated a desire to share their experience with their instructor. In order to better understand these experiences, research participants were asked to share a story, using the novel data collection platform SenseMaker, based on the following prompt: Imagine you are chatting with a friend or family member about the evolving COVID-19 crisis. Tell them about something you have experienced recently as an engineering student. Conducting a SenseMaker study involves four iterative steps: 1) Initiation is the process of designing signifiers, testing, and deploying the instrument; 2) Story Collection is the process of collecting data through narratives; 3) Sense-making is the process of exploring and analyzing patterns of the collection of narratives; and 4) Response is the process of amplifying positive stories and dampening negative stories to nudge the system to an adjacent possible (Van der Merwe et al. 2019). Unlike traditional surveys or other qualitative data collection methods, SenseMaker encourages participants to think more critically about the stories they share by inviting them to make sense of their story using a series of triads and dyads. After completing their narrative, participants were asked a series of triadic, dyadic, and sentiment-based multiple-choice questions (MCQ) relevant to their story. For one MCQ, in particular, participants were required to answer was “If you could do so without fear of judgment or retaliation, who would you share this story with?” and were given the following options: 1) Family 2) Instructor 3) Peers 4) Prefer not to answer 5) Other. A third of the participants indicated that they would share their story with their instructor. Therefore, we further explored this particular question. Additionally, this paper aims to highlight this subset of students whose primary motivation for their actions were based on Necessity. High-level qualitative findings from the data show that students valued Grit and Perseverance, recent experiences influenced their Sense of Purpose, and their decisions were majorly made based on Intuition. Chi-squared tests showed that there were not any significant differences between race and the desire to share with their instructor, however, there were significant differences when factoring in gender suggesting that gender has a large impact on the complexity of navigating school during this time. Lastly, ~50% of participants reported feeling negative or extremely negative about their experiences, ~30% reported feeling neutral, and ~20% reported feeling positive or extremely positive about their experiences. In the study, a total of 500 micro-narratives from underrepresented engineering students were collected from June – July 2020. Undergraduate and graduate students were recruited for participation through the researchers’ personal networks, social media, and through organizations like NSBE. Participants had the option to indicate who is able to read their stories 1) Everyone 2) Researchers Only, or 3) No one. This work presents qualitative stories of those who granted permission for everyone to read. 
    more » « less