skip to main content


Title: Proceedings of the 11th International Conference on Porous Metals and Metallic Foams (MetFoam 2019)
MetFoam 2019 is the 11th edition of the biannual International Conference on Porous Metals and Metallic Foams; it was heled in Dearborn, Michigan, USA between August 20 and 23, 2019. Previous editions were held in various cities around the world starting in Bremen, Germany in 1999. This conference is the largest cross-disciplinary, international technical meeting focused exclusively on the production, properties, and applications of these lightweight multifunctional porous materials. In Dearborn, a total of 115 presentations were delivered at the conference by participants from 17 countries. Many participants travelled long distances to present and attend the conference. Students delivered 40% of the presentations. Emerging areas such as additive manufacturing and freeze casting, as well as nanoporous materials, cellular materials, and metallic metamaterials were covered by some of the presenters. The proceedings volume of MetFoam 2019 is the culmination of several months of work, which included the preparation of the papers by the authors, editing, and reviewing. The papers collected in this volume provide a representative snapshot of the research activity in the field. It is my sincere hope that this proceedings volume will remain a valuable record of MetFoam 2019, and that it will serve as a reference for researchers interested in porous metals and metallic foams. I would like to thank the reviewers and the session chairs for volunteering their precious time and effort. The International Scientific Board and the Steering Committee of MetFoam 2019 provided indispensable input and guidance throughout the planning of the conference. Thanks are also due to Kelcy Wagner and Trudi Dunlap from our organization partner The Minerals, Metals & Materials Society (TMS) for their assistance in the production of the proceedings volume, as well as for their vital hard work during the organization phase of the conference. Certainly, a special thanks go to our sponsors and exhibitors for making the event possible.  more » « less
Award ID(s):
1932762
NSF-PAR ID:
10188806
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 11th International Conference on Porous Metals and Metallic Foams (MetFoam 2019)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There have been numerous efforts documenting the effects of open science in existing papers; however, these efforts typically only consider the author’s analyses and supplemental materials from the papers. While understanding the current rate of open science adoption is important, it is also vital that we explore the factors that may encourage such adoption. One such factor may be publishing organizations setting open science requirements of submitted arti- cles: encouraging researchers to adopt more rigorous reporting and research practices. For example, within the education technology discipline, the ACM Conference on Learning @ Scale (L@S) has been promoting open science practices since 2018 through a Call For Pa- pers statement. The purpose of this study was to replicate previous papers within the proceedings of L@S and compare the degree of open science adoption and robust reproducibility practices to other conferences in education technology without a statement on open science. Specifically, we examined 93 papers and documented the open science practices used. We then attempted to reproduce the results with intervention from authors to bolster the chance of suc- cess. Finally, we compared the overall adoption rates to those from other conferences in education technology. Our cursory review sug- gests that researchers at L@S were more knowledgeable in open science practices, such as preregistration or preprints, compared to the researchers who published in International Conference on Artificial Intelligence in Education and the International Conference on Educational Data Mining as they were less likely to say they were unfamiliar with the practices. However, the overall adoption of open science practices was significantly lower with only 1% of papers providing open data, 5% providing open materials, and no papers with a preregistration. Based on speculation, the low adoption rates maybe due to 20% of the papers not using a dataset, at-scale datasets and materials that were unable to be released to avoid security issues or sensitive data leaks, or that data were being used in ongoing research and are not considered complete enough for release by the authors. All openly accessible work can be found in an Open Science Framework project 
    more » « less
  2. There have been numerous efforts documenting the effects of open science in existing papers; however, these efforts typically only consider the author's analyses and supplemental materials from the papers. While understanding the current rate of open science adoption is important, it is also vital that we explore the factors that may encourage such adoption. One such factor may be publishing organizations setting open science requirements for submitted articles: encouraging researchers to adopt more rigorous reporting and research practices. For example, within the education technology discipline, theACM Conference on Learning @ Scale (L@S) has been promoting open science practices since 2018 through a Call For Papers statement. The purpose of this study was to replicate previous papers within the proceedings of L@S and compare the degree of open science adoption and robust reproducibility practices to other conferences in education technology without a statement on open science. Specifically, we examined 93 papers and documented the open science practices used. We then attempted to reproduce the results with invitation from authors to bolster the chance of success. Finally, we compared the overall adoption rates to those from other conferences in education technology. Although the overall responses to the survey were low, our cursory review suggests that researchers at L@S might be more familiar with open science practices compared to the researchers who published in the International Conference on Artificial Intelligence in Education (AIED) and the International Conference on Educational Data Mining (EDM): 13 of 28 AIED and EDM responses were unfamiliar with preregistrations and 7 unfamiliar with preprints, while only 2 of 7 L@S responses were unfamiliar with preregistrations and 0 with preprints. The overall adoption of open science practices at L@S was much lower with only 1% of papers providing open data, 5% providing open materials, and no papers had a preregistration. All openly accessible work can be found in an Open Science Framework project. 
    more » « less
  3. Within the field of education technology, learning analytics has increased in popularity over the past decade. Researchers conduct experiments and develop software, building on each other’s work to create more intricate systems. In parallel, open science — which describes a set of practices to make research more open, transparent, and reproducible — has exploded in recent years, resulting in more open data, code, and materials for researchers to use. However, without prior knowledge of open science, many researchers do not make their datasets, code, and materials openly available, and those that are available are often difficult, if not impossible, to reproduce. The purpose of the current study was to take a close look at our field by examining previous papers within the proceedings of the International Conference on Learning Analytics and Knowledge, and document the rate of open science adoption (e.g., preregistration, open data), as well as how well available data and code could be reproduced. Specifically, we examined 133 research papers, allowing ourselves 15 minutes for each paper to identify open science practices and attempt to reproduce the results according to their provided specifications. Our results showed that less than half of the research adopted standard open science principles, with approximately 5% fully meeting some of the defined principles. Further, we were unable to reproduce any of the papers successfully in the given time period. We conclude by providing recommendations on how to improve the reproducibility of our research as a field moving forward. All openly accessible work can be found in an Open Science Foundation project1. 
    more » « less
  4. Within the field of education technology, learning analytics has increased in popularity over the past decade. Researchers conduct experiments and develop software, building on each other’s work to create more intricate systems. In parallel, open science — which describes a set of practices to make research more open, transparent, and reproducible — has exploded in recent years, resulting in more open data, code, and materials for researchers to use. However, without prior knowledge of open science, many researchers do not make their datasets, code, and materials openly available, and those that are available are often difficult, if not impossible, to reproduce. The purpose of the current study was to take a close look at our field by examining previous papers within the proceedings of the International Conference on Learning Analytics and Knowledge, and document the rate of open science adoption (e.g., preregistration, open data), as well as how well available data and code could be reproduced. Specifically, we examined 133 research papers, allowing ourselves 15 minutes for each paper to identify open science practices and attempt to reproduce the results according to their provided specifications. Our results showed that less than half of the research adopted standard open science principles, with approximately 5% fully meeting some of the defined principles. Further, we were unable to reproduce any of the papers successfully in the given time period. We conclude by providing recommendations on how to improve the reproducibility of our research as a field moving forward. All openly accessible work can be found in an Open Science Foundation project1. 
    more » « less
  5. null (Ed.)
    The development of tools that promote active learning in engineering disciplines is critical. It is widely understood that students engaged in active learning environments outperform those taught using passive methods. Previously, we reported on the development and implementation of hands-on Low-Cost Desktop Learning Modules (LCDLMs) that replicate real-world industrial equipment which serves to create active learning environments. Thus far, miniaturized venturi meter, hydraulic loss, and double-pipe and shell & tube heat exchanger DLMs have been utilized by hundreds of students across the country. It was demonstrated that the use of DLMs in face-to-face classrooms results in statistically significant improvements in student performance as well as increases in student motivation compared to students taught in a traditional lecture-only style classroom. Last year, participants in the project conducted 45 implementations including over 600 DLMs at 24 universities across the country reaching more than 1,000 students. In this project, we report on the significant progress made in broad dissemination of DLMs and accompanying pedagogy. We demonstrate that DLMs serve to increase student learning gains not only in face-toface environments but also in virtual learning environments. Instructional videos were developed to aid in DLM-based learning during the COVID-19 pandemic when instructors were limited to virtual instruction. Preliminary results from this work show that students working with DLMs even in a virtual setting significantly outperform those taught without DLM-associated materials. Significant progress has also been made on the development of a new DLM cartridge: a see-through 3Dprinted miniature fluidized bed. The new 3D printing methodology will allow for rapid prototyping and streamlined development of DLMs. A 3D-printed evaporative cooling tower DLM will also be developed in the coming year. In October 2020, the team held a virtual implementers workshop to train new participating faculty in DLM use and implementation. In total, 13 new faculty participants from 10 universities attended the 6-hour, 2- day workshop and plan to implement DLMs in their classrooms during this academic year. In the last year, this project was disseminated in 8 presentations at the ASEE Virtual Conference (June 2020) and American Institute of Chemical Engineers Annual Conference (November 2019) as well as the AIChE virtual Community of Practice Labs Group and a seminar at a major university, ultimately disseminating DLM pedagogy to approximately 200 individuals including approximately 120 university faculty. Further, the former group postdoc has accepted an instructor faculty position at University of Wisconsin Madison where she will teach unit operations among other subjects; she and the remainder of the team believe the LCDLM project has prepared her well for that position. In the remaining 2.5 years of the project, we will continue to evaluate the effectiveness of DLMs in teaching key heat transfer and fluid dynamics concepts thru implementations in the rapidly expanding pool of participating universities. Further, we continue our ongoing efforts in creating the robust support structure necessary for large-scale adoption of hands-on educational tools for promotion of hands-on interactive student learning. 
    more » « less