- Award ID(s):
- 1719027
- Publication Date:
- NSF-PAR ID:
- 10188830
- Journal Name:
- International Conference on Information Technology–New Generations
- Sponsoring Org:
- National Science Foundation
More Like this
-
Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floating-point calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should producemore »
-
With the proliferation of low-cost sensors and the Internet of Things, the rate of producing data far exceeds the compute and storage capabilities of today’s infrastructure. Much of this data takes the form of time series, and in response, there has been increasing interest in the creation of time series archives in the last decade, along with the development and deployment of novel analysis methods to process the data. The general strategy has been to apply a plurality of similarity search mechanisms to various subsets and subsequences of time series data in order to identify repeated patterns and anomalies; however, the computational demands of these approaches renders them incompatible with today’s power-constrained embedded CPUs. To address this challenge, we present FA-LAMP, an FPGA-accelerated implementation of the Learned Approximate Matrix Profile (LAMP) algorithm, which predicts the correlation between streaming data sampled in real-time and a representative time series dataset used for training. FA-LAMP lends itself as a real-time solution for time series analysis problems such as classification. We present the implementation of FA-LAMP on both edge- and cloud-based prototypes. On the edge devices, FA-LAMP integrates accelerated computation as close as possible to IoT sensors, thereby eliminating the need to transmit andmore »
-
This paper presents two methods, tegrastats GUI version jtop and Nsight Systems, to profile NVIDIA Jetson embedded GPU devices on a model race car which is a great platform for prototyping and field testing autonomous driving algorithms. The two profilers analyze the power consumption, CPU/GPU utilization, and the run time of CUDA C threads of Jetson TX2 in five different working modes. The performance differences among the five modes are demonstrated using three example programs: vector add in C and CUDA C, a simple ROS (Robot Operating System) package of the wall follow algorithm in Python, and a complex ROS package of the particle filter algorithm for SLAM (Simultaneous Localization and Mapping). The results show that the tools are effective means for selecting operating mode of the embedded GPU devices.
-
Abstract Background Bioinformatic workflows frequently make use of automated genome assembly and protein clustering tools. At the core of most of these tools, a significant portion of execution time is spent in determining optimal local alignment between two sequences. This task is performed with the Smith-Waterman algorithm, which is a dynamic programming based method. With the advent of modern sequencing technologies and increasing size of both genome and protein databases, a need for faster Smith-Waterman implementations has emerged. Multiple SIMD strategies for the Smith-Waterman algorithm are available for CPUs. However, with the move of HPC facilities towards accelerator based architectures, a need for an efficient GPU accelerated strategy has emerged. Existing GPU based strategies have either been optimized for a specific type of characters (Nucleotides or Amino Acids) or for only a handful of application use-cases. Results In this paper, we present ADEPT, a new sequence alignment strategy for GPU architectures that is domain independent, supporting alignment of sequences from both genomes and proteins. Our proposed strategy uses GPU specific optimizations that do not rely on the nature of sequence. We demonstrate the feasibility of this strategy by implementing the Smith-Waterman algorithm and comparing it to similar CPU strategies asmore »
-
We present a learning-based approach to prove infeasibility of kinematic motion planning problems. Sampling-based motion planners are effective in high-dimensional spaces but are only probabilistically complete. Consequently, these planners cannot provide a definite answer if no plan exists, which is important for high-level scenarios, such as task-motion planning. We apply data generated during multi-directional sampling-based planning (such as PRM) to a machine learning approach to construct an infeasibility proof. An infeasibility proof is a closed manifold in the obstacle region of the configuration space that separates the start and goal into disconnected components of the free configuration space. We train the manifold using common machine learning techniques and then triangulate the manifold into a polytope to prove containment in the obstacle region. Under assumptions about the hyper-parameters and robustness of configuration space optimization, the output is either an infeasibility proof or a motion plan in the limit. We demonstrate proof construction for up to 4-DOF configuration spaces. A large part of the algorithm is parallelizable, which offers potential to address higher dimensional configuration spaces.