skip to main content


Title: Existence and Properties of Isolated Catalytic Sites on the Surface of β-Cristobalite-Supported, Doped Tungsten Oxide Catalysts (WO x /β-SiO 2 , Na-WO x /β-SiO 2 , Mn-WO x /β-SiO 2 ) for Oxidative Coupling of Methane (OCM): A Combined Periodic DFT and Experimental Study
Award ID(s):
1706581
NSF-PAR ID:
10188877
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ACS Catalysis
Volume:
10
Issue:
8
ISSN:
2155-5435
Page Range / eLocation ID:
4580 to 4592
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. Abstract

    Site‐selective and partial decoration of supported metal nanoparticles (NPs) with transition metal oxides (e.g., FeOx) can remarkably improve its catalytic performance and maintain the functions of the carrier. However, it is challenging to selectively deposit transition metal oxides on the metal NPs embedded in the mesopores of supporting matrix through conventional deposition method. Herein, a restricted in situ site‐selective modification strategy utilizing poly(ethylene oxide)‐block‐polystyrene (PEO‐b‐PS) micellar nanoreactors is proposed to overcome such an obstacle. The PEO shell of PEO‐b‐PS micelles interacts with the hydrolyzed tungsten salts and silica precursors, while the hydrophobic organoplatinum complex and ferrocene are confined in the hydrophobic PS core. The thermal treatment leads to mesoporous SiO2/WO3‐xframework, and meanwhile FeOxnanolayers are in situ partially deposited on the supported Pt NPs due to the strong metal‐support interaction between FeOxand Pt. The selective modification of Pt NPs with FeOxmakes the Pt NPs present an electron‐deficient state, which promotes the mobility of CO and activates the oxidation of CO. Therefore, mesoporous SiO2/WO3‐x‐FeOx/Pt based gas sensors show a high sensitivity (31 ± 2 in 50 ppm of CO), excellent selectivity, and fast response time (3.6 s to 25 ppm) to CO gas at low operating temperature (66 °C, 74% relative humidity).

     
    more » « less
  3. null (Ed.)
  4. Abstract

    The complex structure of the catalytic active phase, and surface‐gas reaction networks have hindered understanding of the oxidative coupling of methane (OCM) reaction mechanism by supported Na2WO4/SiO2catalysts. The present study demonstrates, with the aid of in situ Raman spectroscopy and chemical probe (H2‐TPR, TAP and steady‐state kinetics) experiments, that the long speculated crystalline Na2WO4active phase is unstable and melts under OCM reaction conditions, partially transforming to thermally stable surface Na‐WOxsites. Kinetic analysis via temporal analysis of products (TAP) and steady‐state OCM reaction studies demonstrate that (i) surface Na‐WOxsites are responsible for selectively activating CH4to C2Hxand over‐oxidizing CHyto CO and (ii) molten Na2WO4phase is mainly responsible for over‐oxidation of CH4to CO2and also assists in oxidative dehydrogenation of C2H6to C2H4. These new insights reveal the nature of catalytic active sites and resolve the OCM reaction mechanism over supported Na2WO4/SiO2catalysts.

     
    more » « less