skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phase Stabilized MOCVD Growth of β‐Ga 2 O 3 Using SiO x on c‐Plane Sapphire and AlN/Sapphire Template
The growth of monoclinic phase‐pure gallium oxide (β‐Ga2O3) layers by metal–organic chemical vapor deposition on c‐plane sapphire and aluminum nitride (AlN) templates using silicon‐oxygen bonding (SiOx) as a phase stabilizer is reported. The β‐Ga2O3layers are grown using triethylgallium, oxygen, and silane for gallium, oxygen, and silicon precursors, respectively, at 700 °C, with and without silane flow in the process. The samples grown on sapphire with SiOxphase stabilization show a notable change from samples without phase stabilization in the roughness and resistivity, from 16.2 to 4.2 nm and from 85.82 to 135.64 Ω cm, respectively. X‐ray diffraction reveals a pure‐monoclinic phase, and Raman spatial mapping exhibits higher tensile strain in the films in the presence of SiOx. The β‐Ga2O3layers grown on an AlN template, using the same processes as for sapphire, show an excellent epitaxial relationship between β‐Ga2O3and AlN and have a significant change in β‐Ga2O3surface morphology.  more » « less
Award ID(s):
2124624
PAR ID:
10419185
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
physica status solidi (a)
Volume:
220
Issue:
11
ISSN:
1862-6300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Teherani, Ferechteh H.; Rogers, David J. (Ed.)
    We demonstrated a metal-organic chemical vapor deposition (MOCVD) of smooth, thick, and monoclinic phase-pure gallium oxide (Ga2O3) on c-plane sapphire using silicon-oxygen bonding (SiOx) as a phase stabilizer. The corundum (α), monoclinic (β), and orthorhombic (ε) phases of Ga2O3 with a bandgap in the 4.4 – 5.1 eV range, are promising materials for power semiconductor devices and deep ultraviolet (UV) solar-blind photodetectors. The MOCVD systems are extensively used for homoepitaxial growth of β-Ga2O3 on (001), (100), (010), and (¯2 01) β-Ga2O3 substrates. These substrates are rare/expensive and have very low thermal conductivity; thus, are not suitable for high-power semiconductor devices. The c-plane sapphire is typically used as a substrate for high-power devices. The β-Ga2O3 grows in the (¯2 01) direction on sapphire. In this direction, the presence of high-density oxygen dangling bonds, frequent stacking faults, twinning, and other phases and planes impede the heteroepitaxy of thick β-Ga2O3. Previously phase stabilizations with SiOx have been reported for tetragonal and monoclinic hafnia. We were able to grow ~580nm thick β-Ga2O3 on sapphire by MOCVD at 750 oC through phase stabilization using silane. The samples grown with silane have a reduction in the surface roughness and resistivity from 10.7 nm to 4.4 nm and from 371.75 Ω.cm to 135.64 Ω.cm, respectively. These samples show a pure-monoclinic phase determined by x-ray diffraction (XRD); have tensile strain determined by Raman strain mapping. These results show that a thick, phase-pure -Ga2O3 can be grown on c-plane sapphire which can be suitable for creating power devices with better thermal management. 
    more » « less
  2. Epitaxial growth of κ-phase Ga 2 O 3 thin films is investigated on c-plane sapphire, GaN- and AlN-on-sapphire, and (100) oriented yttria stabilized zirconia (YSZ) substrates via metalorganic chemical vapor deposition. The structural and surface morphological properties are investigated by comprehensive material characterization. Phase pure κ-Ga 2 O 3 films are successfully grown on GaN-, AlN-on-sapphire, and YSZ substrates through a systematical tuning of growth parameters including the precursor molar flow rates, chamber pressure, and growth temperature, whereas the growth on c-sapphire substrates leads to a mixture of β- and κ-polymorphs of Ga 2 O 3 under the investigated growth conditions. The influence of the crystalline structure, surface morphology, and roughness of κ-Ga 2 O 3 films grown on different substrates are investigated as a function of precursor flow rate. High-resolution scanning transmission electron microscopy imaging of κ-Ga 2 O 3 films reveals abrupt interfaces between the epitaxial film and the sapphire, GaN, and YSZ substrates. The growth of single crystal orthorhombic κ-Ga 2 O 3 films is confirmed by analyzing the scanning transmission electron microscopy nanodiffraction pattern. The chemical composition, surface stoichiometry, and bandgap energies of κ-Ga 2 O 3 thin films grown on different substrates are studied by high-resolution x-ray photoelectron spectroscopy (XPS) measurements. The type-II (staggered) band alignments at three interfaces between κ-Ga 2 O 3 and c-sapphire, AlN, and YSZ substrates are determined by XPS, with an exception of κ-Ga 2 O 3 /GaN interface, which shows type-I (straddling) band alignment. 
    more » « less
  3. Growths of monoclinic (AlxGa1−x)2O3thin films up to 99% Al contents are demonstrated via metalorganic chemical vapor deposition (MOCVD) using trimethylgallium (TMGa) as the Ga precursor. The utilization of TMGa, rather than triethylgallium, enables a significant improvement of the growth rates (>2.5 μm h−1) of β‐(AlxGa1−x)2O3thin films on (010), (100), and (01) β‐Ga2O3substrates. By systematically tuning the precursor molar flow rates, growth of coherently strained phase pure β‐(AlxGa1−x)2O3films is demonstrated by comprehensive material characterizations via high‐resolution X‐ray diffraction (XRD) and atomic‐resolution scanning transmission electron microscopy (STEM) imaging. Monoclinic (AlxGa1−x)2O3films with Al contents up to 99, 29, and 16% are achieved on (100), (010), and (01) β‐Ga2O3substrates, respectively. Beyond 29% of Al incorporation, the (010) (AlxGa1−x)2O3films exhibit β‐ to γ‐phase segregation. β‐(AlxGa1−x)2O3films grown on (01) β‐Ga2O3show local segregation of Al along (100) plane. Record‐high Al incorporations up to 99% in monoclinic (AlxGa1−x)2O3grown on (100) Ga2O3are confirmed from XRD, STEM, electron nanodiffraction, and X‐ray photoelectron spectroscopy measurements. These results indicate great promises of MOCVD development of β‐(AlxGa1−x)2O3films and heterostructures with high Al content and growth rates using TMGa for next‐generation high‐power and high‐frequency electronic devices. 
    more » « less
  4. Secondary‐ion mass spectrometry (SIMS) is used to determine impurity concentrations of carbon and oxygen in two scandium‐containing nitride semiconductor multilayer heterostructures: ScxGa1−xN/GaN and ScxAl1−xN/AlN grown by molecular beam epitaxy (MBE). In the ScxGa1−xN/GaN heterostructure grown in metal‐rich conditions on GaN–SiC template substrates with Sc contents up to 28 at%, the oxygen concentration is found to be below 1 × 1019 cm−3, with an increase directly correlated with the scandium content. In the ScxAl1−xN–AlN heterostructure grown in nitrogen‐rich conditions on AlN–Al2O3template substrates with Sc contents up to 26 at%, the oxygen concentration is found to be between 1019and 1021 cm−3, again directly correlated with the Sc content. The increase in oxygen and carbon takes place during the deposition of scandium‐alloyed layers. 
    more » « less
  5. Gallium oxide (β-Ga 2 O 3 ) is becoming a popular material for high power electronic devices due to its wide bandgap and ease of processing. In this work, β-Ga 2 O 3 substrates received various annealing treatments before atomic layer deposition of HfO 2 and subsequent fabrication of metal–oxide–semiconductor (MOS) capacitors. Annealing of β-Ga 2 O 3 with forming gas or nitrogen produced degraded capacitance–voltage (C–V) behavior compared to a β-Ga 2 O 3 control sample with no annealing. A sample annealed with pure oxygen had improved C–V characteristics relative to the control sample, with a higher maximum capacitance and smaller flat-band voltage shift, indicating that oxygen annealing improved the C–V behavior. X-ray photoelectron spectroscopy also suggested a reduction in the oxygen vacancy concentration after O 2 annealing at 450 °C, which supports the improved C–V characteristics and indicates that O 2 annealing of β-Ga 2 O 3 may lead to better MOS device performance. 
    more » « less