Human-Robot Collaboration (HRC), which envisions a workspace in which human and robot can dynamically collaborate, has been identified as a key element in smart manufacturing. Human action recognition plays a key role in the realization of HRC as it helps identify current human action and provides the basis for future action prediction and robot planning. Despite recent development of Deep Learning (DL) that has demonstrated great potential in advancing human action recognition, one of the key issues remains as how to effectively leverage the temporal information of human motion to improve the performance of action recognition. Furthermore, large volume of training data is often difficult to obtain due to manufacturing constraints, which poses challenge for the optimization of DL models. This paper presents an integrated method based on optical flow and convolutional neural network (CNN)-based transfer learning to tackle these two issues. First, optical flow images, which encode the temporal information of human motion, are extracted and serve as the input to a two-stream CNN structure for simultaneous parsing of spatial-temporal information of human motion. Then, transfer learning is investigated to transfer the feature extraction capability of a pretrained CNN to manufacturing scenarios. Evaluation using engine block assembly confirmed the effectiveness of the developed method.
more »
« less
Transferable two-stream convolutional neural network for human action recognition
Human-Robot Collaboration (HRC), which enables a workspace where human and robot can dynamically and safely collaborate for improved operational efficiency, has been identified as a key element in smart manufacturing. Human action recognition plays a key role in the realization ofHRC, as it helps identify current human action and provides the basis for future action prediction and robot planning. While Deep Learning (DL) has demonstrated great potential in advancing human action recognition, effectively leveraging the temporal information of human motions to improve the accuracy and robustness of action recognition has remained as a challenge. Furthermore, it is often difficult to obtain a large volume of data for DL network training and optimization, due to operational constraints in a realistic manufacturing setting. This paper presents an integrated method to address these two challenges, based on the optical flow and convolutional neural network (CNN)based transfer learning. Specifically, optical flow images, which encode the temporal information of human motion, are extracted and serve as the input to a two-stream CNN structure for simultaneous parsing of spatial-temporal information of human motion. Subsequently, transfer learning is investigated to transfer the feature extraction capability of a pre-trained CNN to manufacturing scenarios. Evaluation using engine block assembly confirmed the effectiveness of the developed method.
more »
« less
- Award ID(s):
- 1830295
- PAR ID:
- 10189078
- Date Published:
- Journal Name:
- Journal of manufacturing systems
- ISSN:
- 1878-6642
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Human action recognition is an important topic in artificial intelligence with a wide range of applications including surveillance systems, search-and-rescue operations, human-computer interaction, etc. However, most of the current action recognition systems utilize videos captured by stationary cameras. Another emerging technology is the use of unmanned ground and aerial vehicles (UAV/UGV) for different tasks such as transportation, traffic control, border patrolling, wild-life monitoring, etc. This technology has become more popular in recent years due to its affordability, high maneuverability, and limited human interventions. However, there does not exist an efficient action recognition algorithm for UAV-based monitoring platforms. This paper considers UAV-based video action recognition by addressing the key issues of aerial imaging systems such as camera motion and vibration, low resolution, and tiny human size. In particular, we propose an automated deep learning-based action recognition system which includes the three stages of video stabilization using the SURF feature selection and Lucas-Kanade method, human action area detection using faster region-based convolutional neural networks (R-CNN), and action recognition. We propose a novel structure that extends and modifies the InceptionResNet-v2 architecture by combining a 3D CNN architecture and a residual network for action recognition. We achieve an average accuracy of 85.83% for the entire-video-level recognition when applying our algorithm to the popular UCF-ARG aerial imaging dataset. This accuracy significantly improves upon the state-of-the-art accuracy by a margin of 17%.more » « less
-
In this paper, we propose a convolutional layer inspired by optical flow algorithms to learn motion representations. Our representation flow layer is a fully-differentiable layer designed to capture the `flow' of any representation channel within a convolutional neural network for action recognition. Its parameters for iterative flow optimization are learned in an end-to-end fashion together with the other CNN model parameters, maximizing the action recognition performance. Furthermore, we newly introduce the concept of learning `flow of flow' representations by stacking multiple representation flow layers. We conducted extensive experimental evaluations, confirming its advantages over previous recognition models using traditional optical flows in both computational speed and performance. The code is publicly available.more » « less
-
Abstract Human-robot collaboration (HRC) is a challenging task in modern industry and gesture communication in HRC has attracted much interest. This paper proposes and demonstrates a dynamic gesture recognition system based on Motion History Image (MHI) and Convolutional Neural Networks (CNN). Firstly, ten dynamic gestures are designed for a human worker to communicate with an industrial robot. Secondly, the MHI method is adopted to extract the gesture features from video clips and generate static images of dynamic gestures as inputs to CNN. Finally, a CNN model is constructed for gesture recognition. The experimental results show very promising classification accuracy using this method.more » « less
-
Avidan, S. (Ed.)Despite the success of fully-supervised human skeleton sequence modeling, utilizing self-supervised pre-training for skeleton sequence representation learning has been an active field because acquiring task-specific skeleton annotations at large scales is difficult. Recent studies focus on learning video-level temporal and discriminative information using contrastive learning, but overlook the hierarchical spatial-temporal nature of human skeletons. Different from such superficial supervision at the video level, we propose a self-supervised hierarchical pre-training scheme incorporated into a hierarchical Transformer-based skeleton sequence encoder (Hi-TRS), to explicitly capture spatial, short-term, and long-term temporal dependencies at frame, clip, and video levels, respectively. To evaluate the proposed self-supervised pre-training scheme with Hi-TRS, we conduct extensive experiments covering three skeleton-based downstream tasks including action recognition, action detection, and motion prediction. Under both supervised and semi-supervised evaluation protocols, our method achieves the state-of-the-art performance. Additionally, we demonstrate that the prior knowledge learned by our model in the pre-training stage has strong transfer capability for different downstream tasks.more » « less
An official website of the United States government

