skip to main content

Title: Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers
Optical tweezers have emerged as a powerful tool for the non-invasive trapping and manipulation of colloidal particles and biological cells1,2. However, the diffraction limit precludes the low-power trapping of nanometre-scale objects. Substantially increasing the laser power can provide enough trapping potential depth to trap nanoscale objects. Unfortunately, the substantial optical intensity required causes photo-toxicity and thermal stress in the trapped biological specimens3. Low-power near-field nano-optical tweezers comprising plasmonic nanoantennas and photonic crystal cavities have been explored for stable nanoscale object trapping4,5,6,7,8,9,10,11,12,13. However, the demonstrated approaches still require that the object is trapped at the high-light-intensity region. We report a new kind of optically controlled nanotweezers, called opto-thermo-electrohydrodynamic tweezers, that enable the trapping and dynamic manipulation of nanometre-scale objects at locations that are several micrometres away from the high-intensity laser focus. At the trapping locations, the nanoscale objects experience both negligible photothermal heating and light intensity. Opto-thermo-electrohydrodynamic tweezers employ a finite array of plasmonic nanoholes illuminated with light and an applied a.c. electric field to create the spatially varying electrohydrodynamic potential that can rapidly trap sub-10 nm biomolecules at femtomolar concentrations on demand. This non-invasive optical nanotweezing approach is expected to open new opportunities in nanoscience and life science by offering an more » unprecedented level of control of nano-sized objects, including photo-sensitive biological molecules. « less
Authors:
; ;
Award ID(s):
1933109
Publication Date:
NSF-PAR ID:
10189194
Journal Name:
Nature Nanotechnology
ISSN:
1748-3387
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Opto-thermoelectric tweezers present a new paradigm for optical trapping and manipulation of particles using low-power and simple optics. New real-life applications of opto-thermoelectric tweezers in areas such as biophysics, microfluidics, and nanomanufacturing will require them to have large-scale and high-throughput manipulation capabilities in complex environments. Here, we present opto-thermoelectric speckle tweezers, which use speckle field consisting of many randomly distributed thermal hotspots that arise from an optical speckle pattern to trap multiple particles over large areas. By further integrating the speckle tweezers with a microfluidic system, we experimentally demonstrate their application for size-based nanoparticle filtration. With their low-power operation, simplicity, and versatility, opto-thermoelectric speckle tweezers will broaden the applications of optical manipulation techniques.
  2. Optical tweezers offer revolutionary opportunities for both fundamental and applied research in materials science, biology, and medical engineering. However, the requirement of a strongly focused and high-intensity laser beam results in potential photon-induced and thermal damages to target objects, including nanoparticles, cells, and biomolecules. Here, we report a new type of light-based tweezers, termed opto-refrigerative tweezers, which exploit solid-state optical refrigeration and thermophoresis to trap particles and molecules at the laser-generated cold region. While laser refrigeration can avoid photothermal heating, the use of a weakly focused laser beam can further reduce the photodamages to the target object. This novel and noninvasive optical tweezing technique will bring new possibilities in the optical control of nanomaterials and biomolecules for essential applications in nanotechnology, photonics, and life science.
  3. Metallic structures can be used for the localized heating of fluid and the controlled generation of microfluidic currents. Carefully designed currents can move and trap small particles and cells. Here we demonstrate a new bi-metallic substrate that allows much more powerful micro-scale manipulation. We show that there are multiple regimes of opto-fluidic manipulation that can be controlled by an external laser power. While the lowest power does not affect even small objects, medium power can be used for efficiently capturing and trapping particles and cells. Finally, the high-power regime can be used for 3D levitation that, for the first time, has been demonstrated in this paper. Additionally, we demonstrate opto-fluidic manipulation for an extraordinarily dynamic range of masses extending eight orders of magnitude: from 80 fg nano-wires to 5.4 µg live worms.
  4. Abstract

    Optomechanics arises from the photon momentum and its exchange with low-dimensional objects. It is well known that optical radiation exerts pressure on objects, pushing them along the light path. However, optical pulling of an object against the light path is still a counter-intuitive phenomenon. Herein, we present a general concept of optical pulling—opto-thermoelectric pulling (OTEP)—where the optical heating of a light-absorbing particle using a simple plane wave can pull the particle itself against the light path. This irradiation orientation-directed pulling force imparts self-restoring behaviour to the particles, and three-dimensional (3D) trapping of single particles is achieved at an extremely low optical intensity of 10−2 mW μm−2. Moreover, the OTEP force can overcome the short trapping range of conventional optical tweezers and optically drive the particle flow up to a macroscopic distance. The concept of self-induced opto-thermomechanical coupling is paving the way towards freeform optofluidic technology and lab-on-a-chip devices.

  5. Since its advent in the 1970s, optical tweezers have been widely deployed as a preferred non-contact technique for manipulating microscale objects. On-chip integrated optical tweezers, which afford significant size, weight, and cost benefits, have been implemented, relying upon near-field evanescent waves. As a result, these tweezers are only capable of manipulation in near-surface regions and often demand high power since the evanescent interactions are relatively weak. We introduce on-chip optical tweezers based on freeform micro-optics, which comprise optical reflectors or refractive lenses integrated on waveguide end facets via two-photon polymerization. The freeform optical design offers unprecedented degrees of freedom to design optical fields with strong three-dimensional intensity gradients, useful for trapping and manipulating suspended particles in an integrated chip-scale platform. We demonstrate the design, fabrication, and measurement of both reflective and refractive micro-optical tweezers. The reflective tweezers feature a remarkably low trapping threshold power, and the refractive tweezers are particularly useful for multiparticle trapping and interparticle interaction analysis. Our integrated micro-optical tweezers uniquely combine a compact footprint, broadband operation, high trapping efficiency, and scalable integration with planar photonic circuits. This class of tweezers is promising for on-chip sensing, cell assembly, particle dynamics analysis, and ion trapping.