skip to main content


Title: Opto-refrigerative tweezers
Optical tweezers offer revolutionary opportunities for both fundamental and applied research in materials science, biology, and medical engineering. However, the requirement of a strongly focused and high-intensity laser beam results in potential photon-induced and thermal damages to target objects, including nanoparticles, cells, and biomolecules. Here, we report a new type of light-based tweezers, termed opto-refrigerative tweezers, which exploit solid-state optical refrigeration and thermophoresis to trap particles and molecules at the laser-generated cold region. While laser refrigeration can avoid photothermal heating, the use of a weakly focused laser beam can further reduce the photodamages to the target object. This novel and noninvasive optical tweezing technique will bring new possibilities in the optical control of nanomaterials and biomolecules for essential applications in nanotechnology, photonics, and life science.  more » « less
Award ID(s):
2001650
NSF-PAR ID:
10333438
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
7
Issue:
26
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical tweezers have emerged as a powerful tool for the non-invasive trapping and manipulation of colloidal particles and biological cells1,2. However, the diffraction limit precludes the low-power trapping of nanometre-scale objects. Substantially increasing the laser power can provide enough trapping potential depth to trap nanoscale objects. Unfortunately, the substantial optical intensity required causes photo-toxicity and thermal stress in the trapped biological specimens3. Low-power near-field nano-optical tweezers comprising plasmonic nanoantennas and photonic crystal cavities have been explored for stable nanoscale object trapping4,5,6,7,8,9,10,11,12,13. However, the demonstrated approaches still require that the object is trapped at the high-light-intensity region. We report a new kind of optically controlled nanotweezers, called opto-thermo-electrohydrodynamic tweezers, that enable the trapping and dynamic manipulation of nanometre-scale objects at locations that are several micrometres away from the high-intensity laser focus. At the trapping locations, the nanoscale objects experience both negligible photothermal heating and light intensity. Opto-thermo-electrohydrodynamic tweezers employ a finite array of plasmonic nanoholes illuminated with light and an applied a.c. electric field to create the spatially varying electrohydrodynamic potential that can rapidly trap sub-10 nm biomolecules at femtomolar concentrations on demand. This non-invasive optical nanotweezing approach is expected to open new opportunities in nanoscience and life science by offering an unprecedented level of control of nano-sized objects, including photo-sensitive biological molecules. 
    more » « less
  2. This Letter reports ring-shaped photoacoustic (PA) tweezers that are capable of manipulating single or multiple micron-sized particles. By illuminating a thin layer of an optically absorptive liquid medium with a focused annular pulsed laser beam and a higher pulse repetition rate (e.g., 800 Hz), both acoustic radiation force and instantaneous vaporization repulsion are generated within a certain distance of the illumination region. This makes it possible to conduct continuous and versatile locomotion of single or multiple microparticles. In this Letter, interactions between two or more particles are demonstrated, such as separation, attachment, and grouping of microparticles. The PA tweezers combine some of the advantages of conventional optical and acoustic tweezers and are expected to be a useful alternative approach for the manipulation of microscale objects.

     
    more » « less
  3. Abstract

    Optical tweezers have profound importance across fields ranging from manufacturing to biotechnology. However, the requirement of refractive index contrast and high laser power results in potential photon and thermal damage to the trapped objects, such as nanoparticles and biological cells. Optothermal tweezers have been developed to trap particles and biological cells via opto-thermophoresis with much lower laser powers. However, the intense laser heating and stringent requirement of the solution environment prevent their use for general biological applications. Here, we propose hypothermal opto-thermophoretic tweezers (HOTTs) to achieve low-power trapping of diverse colloids and biological cells in their native fluids. HOTTs exploit an environmental cooling strategy to simultaneously enhance the thermophoretic trapping force at sub-ambient temperatures and suppress the thermal damage to target objects. We further apply HOTTs to demonstrate the three-dimensional manipulation of functional plasmonic vesicles for controlled cargo delivery. With their noninvasiveness and versatile capabilities, HOTTs present a promising tool for fundamental studies and practical applications in materials science and biotechnology.

     
    more » « less
  4. null (Ed.)
    Abstract We demonstrate a new practical approach for generating multicolour spiral-shaped beams. It makes use of a standard silica optical fibre, combined with a tilted input laser beam. The resulting breaking of the fibre axial symmetry leads to the propagation of a helical beam. The associated output far-field has a spiral shape, independently of the input laser power value. Whereas, with a high-power near-infrared femtosecond laser, a visible supercontinuum spiral emission is generated. With appropriate control of the input laser coupling conditions, the colours of the spiral spatially self-organize in a rainbow distribution. Our method is independent of the laser source wavelength and polarization. Therefore, standard optical fibres may be used for generating spiral beams in many applications, ranging from communications to optical tweezers and quantum optics. 
    more » « less
  5. We propose engineering optical traps over plasmonic surfaces and precisely controlling the trap position with an external bias by inducing in-plane nonreciprocity on the surface. The platform employs an incident Gaussian beam to polarize targeted nanoparticles, and exploits the interplay between nonreciprocal and spin-orbit lateral recoil forces to construct stable optical traps and manipulate their position within the surface. To model this process, we develop a theoretical framework based on the Lorentz force combined with nonreciprocal Green’s functions and apply it to calculate the trapping potential. Rooted on this formalism, we explore the exciting possibilities offered by graphene to engineer stable optical traps using low-power laser beams in the mid-IR and to manipulate the trap position in a continuous manner by applying a longitudinal drift bias. Nonreciprocal metasurfaces may open new possibilities to trap, assemble and manipulate nanoparticles and overcome many challenges faced by conventional optical tweezers while dealing with nanoscale objects.

     
    more » « less