skip to main content


Title: Tomato fruit as a model for tissue-specific gene silencing in crop plants
Abstract

Use of CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated 9)-mediated genome editing has proliferated for use in numerous plant species to modify gene function and expression, usually in the context of either transient or stably inherited genetic alternations. While extremely useful in many applications, modification of some loci yields outcomes detrimental to further experimental evaluation or viability of the target organism. Expression of Cas9 under a promoter conferring gene knockouts in a tissue-specific subset of genomes has been demonstrated in insect and animal models, and recently inArabidopsis. We developed an in planta GFP (green fluorescent protein) assay system to demonstrate fruit-specific gene editing in tomato using aphosphoenolpyruvate carboxylase 2gene promoter. We then targeted a SET-domain containing polycomb protein, SlEZ2, previously shown to yield pleiotropic phenotypes when targeted via35S-driven RNA interference and we were able to characterize fruit phenotypes absent additional developmental perturbations. Tissue-specific gene editing will have applications in assessing function of essential genes otherwise difficult to study via germline modifications and will provide routes to edited genomes in tissues that could not otherwise be recovered when their germline modification perturbs their normal development.

 
more » « less
Award ID(s):
1855585
NSF-PAR ID:
10189239
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Horticulture Research
Volume:
7
Issue:
1
ISSN:
2662-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Gene knock‐out (KO) mouse models for DNA polymerase beta (Polβ) revealed that loss of Polβ leads to neonatal lethality, highlighting the critical organismic role for this DNA polymerase. While biochemical analysis and gene KO cell lines have confirmed its biochemical role in base excision repair and in TET‐mediated demethylation, more long‐lived mouse models continue to be developed to further define its organismic role. ThePolb‐KO mouse was the first of the Cre‐mediated tissue‐specific KO mouse models. This technology was exploited to investigate roles for Polβ in V(D)J recombination (variable‐diversity‐joining rearrangement), DNA demethylation, gene complementation, SPO11‐induced DNA double‐strand break repair, germ cell genome stability, as well as neuronal differentiation, susceptibility to genotoxin‐induced DNA damage, and cancer onset. The revolution in knock‐in (KI) mouse models was made possible by CRISPR/cas9‐mediated gene editing directly in C57BL/6 zygotes. This technology has helped identify phenotypes associated with germline or somatic mutants of Polβ. Such KI mouse models have helped uncover the importance of key Polβ active site residues or specific Polβ enzyme activities, such as thePolbY265Cmouse that develops lupus symptoms. More recently, we have used this KI technology to mutate thePolbgene with two codon changes, yielding thePolbL301R/V303Rmouse. In this KI mouse model, the expressed Polβ protein cannot bind to its obligate heterodimer partner, Xrcc1. Although the expressed mutant Polβ protein is proteolytically unstable and defective in recruitment to sites of DNA damage, the homozygousPolbL301R/V303Rmouse is viable and fertile, yet small in stature. We expect that this and additional targeted mouse models under development are poised to reveal new biological and organismic roles for Polβ.

     
    more » « less
  2. Abstract

    Phytopathogenic bacteria play important roles in plant productivity, and developments in gene editing have potential for enhancing the genetic tools for the identification of critical genes in the pathogenesis process. CRISPR-based genome editing variants have been developed for a wide range of applications in eukaryotes and prokaryotes. However, the unique mechanisms of different hosts restrict the wide adaptation for specific applications. Here, CRISPR-dCas9 (dead Cas9) and nCas9 (Cas9 nickase) deaminase vectors were developed for a broad range of phytopathogenic bacteria. A gene for a dCas9 or nCas9, cytosine deaminase CDA1, and glycosylase inhibitor fusion protein (cytosine base editor, or CBE) was applied to base editing under the control of different promoters. Results showed that the RecA promoter led to nearly 100% modification of the target region. When residing on the broad host range plasmid pHM1, CBERecApis efficient in creating base edits in strains ofXanthomonas,Pseudomonas,ErwiniaandAgrobacterium. CBE based on nCas9 extended the editing window and produced a significantly higher editing rate inPseudomonas. Strains with nonsynonymous mutations in test genes displayed expected phenotypes. By multiplexing guide RNA genes, the vectors can modify up to four genes in a single round of editing. Whole-genome sequencing of base-edited isolates ofXanthomonas oryzaepv.oryzaerevealed guide RNA-independent off-target mutations. Further modifications of the CBE, using a CDA1 variant (CBERecAp-A) reduced off-target effects, providing an improved editing tool for a broad group of phytopathogenic bacteria.

     
    more » « less
  3. Summary

    Eliminating or silencing a gene's level of activity is one of the classic approaches developmental biologists employ to determine a gene's function. A recently developed method of gene perturbation called CRISPR‐Cas, which was derived from a prokaryotic adaptive immune system, has been adapted for use in eukaryotic cells. This technology has been established in several model organisms as a powerful and efficient tool for knocking out or knocking down the function of a gene of interest. It has been recently shown that CRISPR‐Cas functions with fidelity and efficiency inCiona robusta. Here, we show that inC. robustaCRISPR‐Cas mediated genomic knock‐ins can be efficiently generated. Electroporating a tissue‐specific transgene driving Cas9 and a U6‐driven gRNA transgene together with a fluorescent protein‐containing homology directed repair (FP‐HDR) template results in gene‐specific patterns of fluorescence consistent with a targeted genomic insertion. Using the Tyrosinase locus to optimize reagents, we first characterize a new Pol III promoter for expressing gRNAs from theCionasavignyiH1 gene, and then adapt technology that flanks gRNAs by ribozymes allowing cell‐specific expression from Pol II promoters. Next, we examine homology arm‐length efficiencies of FP‐HDR templates. Reagents were then developed for targeting Brachyury and Pou4 that resulted in expected patterns of fluorescence, and sequenced PCR amplicons derived from single embryos validated predicted genomic insertions. Finally, using two differentially colored FP‐HDR templates, we show that biallelic FP‐HDR template insertion can be detected in live embryos of the F0 generation.

     
    more » « less
  4. null (Ed.)
    Cell cultures are effective supplemental models to study specific biochemical pathways used for environmental adaption in animals. They enable isolation from system influence and facilitate control the extracellular environment. For work focusing on fish species many representative cell lines now exist, including a tilapia brain cell line (OmB) developed in our lab. CRISPR/Cas9 gene editing is an additional tool aiding these studies by allowing manipulation of specific genetic loci and evaluating their causal relationship between phenotypes of interest. However, established CRISPR/Cas9 gene targeting tools and methods often have not functioned as efficiently in fish cells as seen in other animal cell models such as mammalian cell lines, consistent with our initial attempts to apply CRISPR/Cas9 in OmB cells that failed to indicate genomic alteration at the targeted sites. Poor expression of heterologous promoters in OmB cells was hypothesized to be a primary cause for this occurrence so we constructed a custom plasmid vector based system utilizing tilapia endogenous promoters (EF1 alpha to express Cas9 and a U6 to express gRNAs). This system demonstrated substantial editing of most target sites attempted with mutational efficiency as high 80%. This work specifically highlighted the importance of phylogenetic proximity in selection of a polymerase III promoter for gRNA expression as commonly used interspecies U6 promoters (human and zebrafish) yielded no detectable gene editing when applied in this system with a common gRNA target sequence. These new tools will allow generation of knockout cell lines for gene targeting studies in tilapia and other phylogenetically close fish species. 
    more » « less
  5. Summary

    The ability to edit plant genomes through gene targeting (GT) requires efficient methods to deliver both sequence‐specific nucleases (SSNs) and repair templates to plant cells. This is typically achieved usingAgrobacteriumT‐DNA, biolistics or by stably integrating nuclease‐encoding cassettes and repair templates into the plant genome. In dicotyledonous plants, such asNicotinana tabacum(tobacco) andSolanum lycopersicum(tomato), greater than 10‐fold enhancements inGTfrequencies have been achieved usingDNAvirus‐based replicons. These replicons transiently amplify to high copy numbers in plant cells to deliver abundantSSNs and repair templates to achieve targeted gene modification. In the present work, we developed a replicon‐based system for genome engineering of cereal crops using a deconstructed version of the wheat dwarf virus (WDV). In wheat cells, the replicons achieve a 110‐fold increase in expression of a reporter gene relative to non‐replicating controls. Furthermore, replicons carryingCRISPR/Cas9 nucleases and repair templates achievedGTat an endogenousubiquitinlocus at frequencies 12‐fold greater than non‐viral delivery methods. The use of a strong promoter to express Cas9 was critical to attain these highGTfrequencies. We also demonstrate gene‐targeted integration by homologous recombination (HR) in all three of the homoeoalleles (A, B and D) of the hexaploid wheat genome, and we show that with theWDVreplicons, multiplexedGTwithin the same wheat cell can be achieved at frequencies of ~1%. In conclusion, high frequencies ofGTusingWDV‐basedDNAreplicons will make it possible to edit complex cereal genomes without the need to integrateGTreagents into the genome.

     
    more » « less