A multidisciplinary service-learning project that involved teaching engineering to fourth and fifth graders was implemented in three sets of engineering and education classes to determine if there was an impact on engineering knowledge and teamwork skills in both the engineering and education students as well as persistence in the engineering students. Collaboration 1 paired a 100-level engineering Information Literacy class in Mechanical and Aerospace Engineering with a 300-level Educational Foundation class. Collaboration 2 combined a 300-level Electromechanical Systems class in Mechanical Engineering with a 400-level Educational Technology class. Collaboration 3 paired a 300-level Fluid Mechanics class in Mechanical Engineering Technology with a 400-level Elementary Science Methods class. Collaborations 1 and 3 interacted with fourth or fifth graders by developing and delivering lessons to the elementary students. Students in collaboration 2 worked with fifth graders in an after-school technology club. While each collaboration had its unique elements, all collaborations included the engineering design process both in classroom instruction and during the service learning project. Quantitative data were collected from both engineering and education students in a pretest/posttest design. Teamwork skills were measured in engineering students using a validated teamwork skills assessment based on peer evaluation. Each class had a comparison class taught by the same instructor that included a team project, and the same quantitative measures. Engineering students who participated in collaboration 1 were evaluated for retention, which was defined as students who were still enrolled in the college of engineering and technology two semesters after completion of the course. Engineering students also completed an evaluation of academic and professional persistence. For the engineering students, none of the assessments involving technical skills had significant differences, although the design process knowledge tests trended upward in the treatment classes. The preservice teachers in the treatment group scored significantly higher in the design process knowledge test, and preservice teachers in collaborations 1 and 3 had higher scores in the engineering knowledge test than the comparison group. Teamwork skills in the treatment group were significantly higher than in the comparison group for both engineering and education students. Thus, engineering and education students in the treatment groups saw gains in teamwork skills, while education students saw more gains in engineering knowledge. Finally, all engineering students had significantly higher professional persistence.
more »
« less
The First Year of an Undergraduate Service Learning Partnership to Enhance Engineering Education and Elementary Pre-Service Teacher Education
This project was designed to address three major challenges faced by undergraduate engineering students (UES) and pre-service teachers (PSTs): 1) retention for UESs after the first year, and continued engagement when they reach more difficult concepts, 2) to prepare PSTs to teach engineering, which is a requirement in the Next Generation Science Standards as well as many state level standards of learning, and 3) to prepare both groups of students to communicate and collaborate in a multi-disciplinary context, which is a necessary skill in their future places of work. This project was implemented in three pairs of classes: 1) an introductory mechanical engineering class, fulfilling a general education requirement for information literacy and a foundations class in education, 2) fluid mechanics in mechanical engineering technology and a science methods class in education, and 3) mechanical engineering courses requiring programming (e.g., computational methods and robotics) with an educational technology class. All collaborations taught elementary level students (4th or 5th grade). For collaborations 1 and 2, the elementary students came to campus for a field trip where they toured engineering labs and participated in a one hour lesson taught by both the UESs and PSTs. In collaboration 3, the UESs and PSTs worked with the upper-elementary students in their school during an after school club. In collaborations 1 and 2, students were assigned to teams and worked remotely on some parts of the project. A collaboration tool, built in Google Sites and Google Drive, was used to facilitate the project completion. The collaboration tool includes a team repository for all the project documents and templates. Students in collaboration 3 worked together directly during class time on smaller assignments. In all three collaborations lesson plans were implemented using the BSCS 5E instructional model, which was aligned to the engineering design process. Instruments were developed to assess knowledge in collaborations 1 (engineering design process) and 3 (computational thinking), while in collaboration 2, knowledge was assessed with questions from the fundamentals of engineering exam and a science content assessment. Comprehensive Assessment of Team Member Effectiveness (CATME) was also used in all 3 collaborations to assess teamwork across the collaborations. Finally, each student wrote a reflection on their experiences, which was used to qualitatively assess the project impact. The results from the first full semester of implementation have led us to improvements in the implementation and instrument refinement for year 2.
more »
« less
- PAR ID:
- 10189266
- Date Published:
- Journal Name:
- 2020 ASEE Virtual Annual Conference Content Access, Virtual Online
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams of 5-8 undergraduate students to plan and teach engineering lessons to local elementary school students. Teams completed a series of previously tested, scaffolded activities to guide their collaboration. Designing and delivering lessons engaged university students in collaborative processes that promoted social learning, including researching and planning, peer mentoring, teaching and receiving feedback, and reflecting and revising their engineering lesson. The research questions examined in this pilot, mixed-methods research study include: (1) How did PSTs’ Ed+gineering experiences influence their engineering and science knowledge?; (2) How did PSTs’ and UESs’ Ed+gineering experiences influence their pedagogical understanding?; and (3) What were PSTs’ and UESs’ overall perceptions of their Ed+gineering experiences? Both quantitative (e.g., Engineering Design Process assessment, Science Content Knowledge assessment) and qualitative (student reflections) data were used to assess knowledge gains and project perceptions following the semester-long intervention. Findings suggest that the PSTs were more aware and comfortable with the engineering field following lesson development and delivery, and often better able to explain particular science/engineering concepts. Both PSTs and UESs, but especially the latter, came to realize the importance of planning and preparing lessons to be taught to an audience. UESs reported greater appreciation for the work of educators. PSTs and UESs expressed how they learned to work in groups with multidisciplinary members—this is a valuable lesson for their respective professional careers. Yearly, the Ed+gineering research team will also request and review student retention reports in their respective programs to assess project impact.more » « less
-
Preservice teachers (PSTs) in an educational foundations course were tasked with leading elementary students in an engineering design challenge. To explore different approaches for helping the PSTs develop competence in engineering education, two implementation methods were tested. In Spring 2022, PSTs collaborated with undergraduate engineering students to develop carnival-themed design challenge lessons. In Fall 2022, PSTs worked with their PST classmates to teach a professionally prepared engineering lesson focused on designing plastic filters. PSTs’ knowledge of engineering and engineering pedagogy were compared across the two semesters using an exploratory approach. Both groups showed increases in engineering knowledge and engineering pedagogical knowledge. Item-level differences suggest unique benefits to each approach providing insight for teacher educators designing interventions to prepare PSTs to integrate engineering into elementary education.more » « less
-
null (Ed.)Teacher education is facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards and state standards of learning. To help teachers meet these standards in their future classrooms, education courses for preservice teachers [PSTs] must provide opportunities to increase science and engineering knowledge, and the associated pedagogies. To address this need, Ed+gineering, an NSF-funded multidisciplinary service-learning project, was implemented to study ways in which PSTs are prepared to meet this challenge. This study provides the models and supporting data for four unique methods of infusion of engineering skills and practices into an elementary science methods course. The four models differ in mode of course delivery, integration of a group project (with or without partnering undergraduate engineering students), and final product (e.g., no product, video, interactive presentation, live lesson delivery). In three of the models, teams of 4-6 undergraduates collaborated to design and deliver (when applicable) lessons for elementary students. This multiple semester, mixed-methods research study, explored the ways in which four unique instructional models, with varied levels of engineering instruction enhancement, influenced PSTs’ science knowledge and pedagogical understanding. Both quantitative (e.g., science content knowledge assessment) and qualitative (e.g., student written reflections) data were used to assess science knowledge gains and pedagogical understanding. Findings suggest that the PSTs learned science content and were often able to explain particular science/ engineering concepts following the interventions. PSTs in more enhanced levels of intervention also shared ways in which their lessons reflected their students’ cultures through culturally responsive pedagogical strategies and how important engineering integration is to the elementary classroom, particularly through hands-on, inquiry-based instruction.more » « less
-
null (Ed.)Engineers need to develop professional skills, including the ability to work successfully in teams and to communicate within and outside of their discipline, in addition to required technical skills. A collaborative multi-disciplinary service learning project referred to as Ed+gineering was implemented in a 100-level mechanical engineering course. In this collaboration, mechanical engineering students, primarily in the second semester of their freshman year or first semester of their second year, worked over the course of a semester with education students taking a foundations course to develop and deliver engineering lessons to fourth or fifth graders. Students in comparison engineering classes worked on a team project focused on experimental design for a small satellite system. The purpose of this study was to determine if participating in the Ed+gineering collaboration had a positive effect on teamwork effectiveness and satisfaction when compared to the comparison class. In both team projects, the five dimensions of the Comprehensive Assessment of Team Member Effectiveness (CATME) system were used as a quantitative assessment. The five dimensions of CATME Behaviorally Anchored Ratings Scale (BARS) (contribution to the team’s work, interacting with teammates, keeping the team on track, expecting quality, and having relevant Knowledge, Skills, and Abilities - KSAs) were measured. Additionally, within the CATME platform team satisfaction, team interdependence and team cohesiveness were measured. ANCOVA analysis was used to assess the quantitative data from CATME. Preliminary results suggest that students in the treatment classes had higher team member effectiveness and overall satisfaction scores than students in the comparison classes. Qualitative data from reflections written at the completion of the aforementioned projects were used to explore these results.more » « less