skip to main content


Title: Civil Engineering Students’ Beliefs about the Technical and Social Implications of Global Warming and When Global Warming Will Impact Them Personally and Others
The United Nations recognizes reducing the effects of global warming as a Sustainable Development Goal (SDG) (#13). This goal is interconnected and critical to improving health and education, reducing inequality, and spurring economic growth globally. Civil engineers will play a vital role in meeting this goal. To understand how civil engineering students perceive global warming, we surveyed a national sample of civil engineering students in their final semester of college (n = 524). We asked them (a) if they recognize both the technical and social issues associated with global warming and (b) when they believe global warming will start to have a severe effect on themselves, others, and the planet. Civil engineering students are significantly more likely to recognize the technical issues associated with global warming than social issues. In particular, the majority of students understand global warming is an immediate issue for the environment, engineering, health, and science, but less than half recognize global warming presents social justice, poverty, and national security issues. Moreover, civil engineering students hold an inverse relationship between spatial distance and the timing of the effects of global warming. The majority of students believe global warming is currently having a severe impact on plant and animal species, the environment, people in developing countries, and the world's poor but do not recognize themselves in this group. Instead, civil engineering students predominantly believe the effects of global warming will start to have a serious impact on themselves, their family, and people in their community in 25 to 50 years. These results are troubling because if those beliefs translate into students waiting to address climate change for another two to five decades locks in more emissions and increases the chance of future and more severe global humanitarian crises. Educational interventions are needed to change these perspectives about time and impact.  more » « less
Award ID(s):
1635534
NSF-PAR ID:
10189399
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 ASEE Virtual Annual Conference Content Access
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The United Nations recognizes reducing the effects of global warming as a Sustainable Development Goal (SDG) (#13). This goal is interconnected and critical to improving health and education, reducing inequality, and spurring economic growth globally. Civil engineers will play a vital role in meeting this goal. To understand how civil engineering students perceive global warming, we surveyed a national sample of civil engineering students in their final semester of college (n = 524). We asked them (a) if they recognize both the technical and social issues associated with global warming and (b) when they believe global warming will start to have a severe effect on themselves, others, and the planet. Civil engineering students are significantly more likely to recognize the technical issues associated with global warming than social issues. In particular, the majority of students understand global warming is an immediate issue for the environment, engineering, health, and science, but less than half recognize global warming presents social justice, poverty, and national security issues. Moreover, civil engineering students hold an inverse relationship between spatial distance and the timing of the effects of global warming. The majority of students believe global warming is currently having a severe impact on plant and animal species, the environment, people in developing countries, and the world's poor but do not recognize themselves in this group. Instead, civil engineering students predominantly believe the effects of global warming will start to have a serious impact on themselves, their family, and people in their community in 25 to 50 years. These results are troubling because if those beliefs translate into students waiting to address climate change for another two to five decades locks in more emissions and increases the chance of future and more severe global humanitarian crises. Educational interventions are needed to change these perspectives about time and impact. 
    more » « less
  2. When confronted with systematic racism, social justice, and equity issues, engineering and STEM education often assumes that these topics will be covered in other courses and are not relevant to STEM. However, engineering as a discipline has one of the greatest effects on society’s well-being. From the raw materials used, products created, and emissions generated, all aspects of engineering have direct and indirect impacts on humanity. Our current engineering education project works with upper elementary and middle school teachers to apply a culturally relevant engineering design (CRED) framework within their classrooms. This framework is adapted from UTeachEngineering and culturally relevant pedagogy from Gay and Billings is embedded within each step of the design process. The North Dakota Native American Essential Understandings are used to frame and inform the culturally relevant pedagogy. Tribal elder’s stories and experiences are centered along with community leaders in each of the school’s communities. Responses from students and teachers has been overwhelmingly positive. Teachers have noticed increased engagement from all students when cultural and community leaders have been invited into the classroom and involved in the engineering design process. Students who normally do not see themselves represented in STEM professions have taken active leadership roles in their group’s engineering design process. Teachers have also recognized that culturally relevant pedagogy can be utilized in all aspects of their curricula. With the success of the project in elementary and middle school classrooms, the question then became, how can we see similar success in our college classrooms? When brainstorming how to incorporate culture and community in our curricula it became apparent that best practices in engineering education have the opportunity to intentionally involve community and cultural leaders. ABET learning outcomes require the “consideration of public health, safety, and welfare” in engineering design and “the impact of engineering solutions in global, economic, environmental, and societal contexts.” When making engineering design decisions, who will be affected if there is an accidental release of chemicals to the environment? Which communities are affected by global warming? Will the public be able to afford the new product that is being produced? Will the new processes or products add value to people’s lives? And how do we train future engineers to consider all community members, not just those who look like them, but those from the most marginalized groups? This talk will introduce our culturally relevant engineering design framework, provide ways to include community and cultural leaders within courses, and how, with the help of Northwestern’s Anti-Racism, Diversity, Equity and Inclusion resources, to create homework problems that reflect social justice and equity issues within engineering 
    more » « less
  3. null (Ed.)
    CONTEXT With the onset of the COVID-19 pandemic, and the resulting response from universities, engineering students find themselves in an unprecedented situation. In addition to stressors related to the curriculum, residential students across the United States are being asked to relocate away from campus and engage in distance learning. At the same time, social distancing requirements are limiting students’ ability to socialize, procure food and supplies, exercise, and remain employed and financially solvent. Some students will fall ill while others face the prospect of sick family members, and even deaths in the family. Prior research suggests that individuals living through this pandemic are likely to face stress, uncertainty, and fear that affects their mental health and academic performance for years to come. PURPOSE OR GOAL The purpose of this study was to understand the ways in which the COVID-19 pandemic is affecting engineering students’ mental wellness, specifically stress, and how the effects differ for different groups of students. The research questions addressed are: 1) What effects has the pandemic had on baseline stress levels, and how do those vary by demographic group? 2) What effects has the pandemic had on quality of life, such as sleep habits and financial security, and how do those vary by demographic group? METHODS An online survey was conducted in the United States in May and June of 2020. More than 800 4-year engineering students who represented many engineering disciplines and universities responded. The survey used a modified version of the Holmes-Rahe Social Readjustment Rating Scale, which is a widely used and validated instrument to measure the effects of certain life events on stress. The data was analysed to determine the average increase in stress levels for students resulting from COVID-19, and which demographic groups have seen the most negative impact. We also report on which stress-inducing life-events were experienced most. OUTCOMES Latinx individuals and international students report statistically significantly higher levels of stress than the baseline population. Engineering students from other historically excluded identities, however,are not facing statistically significantly worse stress than their peers from historically over represented identities. Veterans fare better than the majority population on this metric.The data also indicates that different groups are more likely to experience different negative life-events because of COVID. CONCLUSIONS No previous research has examined the impacts of a global pandemic on engineering student stress and mental wellness. Our findings show that stress and mental wellness need to be understood intersectionally and that some underrepresented groups are disproportionately impacted by COVID-19. Understanding the impacts on students can help universities strategize and allocate limited resources most effectively to support student success. KEYWORDS Mental wellness; COVID-19; stress 
    more » « less
  4. null (Ed.)
    In recent years, studies in engineering education have begun to intentionally integrate disability into discussions of diversity, inclusion, and equity. To broaden and advocate for the participation of this group in engineering, researchers have identified a variety of factors that have kept people with disabilities at the margins of the field. Such factors include the underrepresentation of disabled individuals within research and industry; systemic and personal barriers, and sociocultural expectations within and beyond engineering education-related contexts. These findings provide a foundational understanding of the external and environmental influences that can shape how students with disabilities experience higher education, develop a sense of belonging, and ultimately form professional identities as engineers. Prior work examining the intersections of disability identity and professional identity is limited, with little to no studies examining the ways in which students conceptualize, define, and interpret disability as a category of identity during their undergraduate engineering experience. This lack of research poses problems for recruitment, retention, and inclusion, particularly as existing studies have shown that the ways in which students perceive and define themselves in relation to their college major is crucial for the development of a professional engineering identity. Further, due to variation in defining ‘disability’ across national agencies (e.g., the National Institutes of Health, and the Department of Justice) and disability communities (with different models of disability), the term “disability” is broad and often misunderstood, frequently referring to a group of individuals with a wide range of conditions and experiences. Therefore, the purpose of this study is to gain deeper insights into the ways students define disability and disability identity within their own contexts as they develop professional identities. Specifically, we ask the following research question: How do students describe and conceptualize non-apparent disabilities? To answer this research question, we draw from emergent findings from an on-going grounded theory exploration of professional identity formation of undergraduate civil engineering students with disabilities. In this paper, we focus our discussion on the grounded theory analyses of 4 semi-structured interviews with participants who have disclosed a non-apparent disability. Study participants consist of students currently enrolled in undergraduate civil engineering programs, students who were initially enrolled in undergraduate civil engineering programs and transferred to another major, and students who have recently graduated from a civil engineering program within the past year. Sensitizing concepts emerged as findings from the initial grounded theory analysis to guide and initiate our inquiry: 1) the medical model of disability, 2) the social model of disability, and 3) personal experience. First, medical models of disability position physical, cognitive, and developmental difference as a “sickness” or “condition” that must be “treated”. From this perspective, disability is perceived as an impairment that must be accommodated so that individuals can obtain a dominantly-accepted sense of normality. An example of medical models within the education context include accommodations procedures in which students must obtain an official diagnosis in order to access tools necessary for academic success. Second, social models of disability position disability as a dynamic and fluid identity that consists of a variety of physical, cognitive, or developmental differences. Dissenting from assumptions of normality and the focus on individual bodily conditions (hallmarks of the medical model), the social model focuses on the political and social structures that inherently create or construct disability. An example of a social model within the education context includes the universal design of materials and tools that are accessible to all students within a given course. In these instances, students are not required to request accommodations and may, consequently, bypass medical diagnoses. Lastly, participants referred to their own life experiences as a way to define, describe, and consider disability. Fernando considers his stutter to be a disability because he is often interrupted, spoken over, or silenced when engaging with others. In turn, he is perceived as unintelligent and unfit to be a civil engineer by his peers. In contrast, David, who identifies as autistic, does not consider himself to be disabled. These experiences highlight the complex intersections of medical and social models of disability and their contextual influences as participants navigate their lives. While these sensitizing concepts are not meant to scope the research, they provide a useful lens for initiating research and provides markers on which a deeper, emergent analysis is expanded. Findings from this work will be used to further explore the professional identity formation of undergraduate civil engineering students with disabilities. These findings will provide engineering education researchers and practitioners with insights regarding the ways individuals with disabilities interpret their in- and out-of-classroom experiences and navigate their disability identities. For higher education, broadly, this work aims to reinforce the complex and diverse nature of disability experience and identity, particularly as it relates to accommodations and accessibility within the classroom, and expand the inclusiveness of our programs and institutions. 
    more » « less
  5. Anthropogenic climate change is irreversibly affecting the planet and society. Civil engineers hold responsibility to design and construct built-environment spaces that decrease climate changing emissions. The purpose of the research presented in this paper is to assess how undergraduate civil engineering programs contribute to this goal. A cross-sectional comparison between data from a prior national survey of freshmen engineering students interested in civil engineering and pilot data from a national survey to senior undergraduate engineering students was used to assess students’ belief in climate change, their understanding of climate science, and desire to address climate change in their careers. The results indicate that senior undergraduate civil engineering students are more likely to believe that climate change is caused by humans (67%) compared to freshmen engineering students (47%). These seniors are also more likely (73%) to agree that action should be taken to address climate change. Yet, only 37 percent hope to personally address climate change in their careers. Senior civil engineering students are more likely than their peers in other engineering disciplines to take classes that include sustainability and climate change as topics (predominately in engineering electives), yet their knowledge of climate science is no better, and in several instances, worse than their engineering peers. For example, civil engineering students are more likely to agree with the statement, “I believe a cause of global climate change is nuclear power generation,” and “I believe a cause of global climate change is the ozone hole in the upper atmosphere.” Undergraduate education is likely contributing to increased belief and recognition to address climate change but an educational gap still persists in understanding. Future research should explore why misconceptions still exist even when climate change is taught in engineering courses and how particular concepts are explained and how student experiences shape understanding and interest. 
    more » « less