skip to main content

Title: Relationship Between Goal Orientation, Agency, and Motivation in Undergraduate Civil Engineering Students
Understanding the underlying psychological constructs that affect undergraduate engineering students’ academic achievement and persistence can inform curricular and programmatic changes in engineering education, with the goal of increasing access and advancement in engineering for a diverse population of students. As part of a larger study examining student experiences in a civil engineering department undergoing curricular and cultural changes, this quantitative study investigated the relationship between goal orientation, agency, and time-oriented motivation, differences in this relationship across academic years, and potential influences from personality types. The larger project seeks to examine the motivation, identity, and sense of belonging for undergraduate civil engineering students; this paper seeks to construct a conceptual model explaining the interactive nature of some of these constructs. A previously tested and established survey that draws from multiple theories of motivation and other affective factors such as agency and identity, and that includes Big 5 personality constructs, was used to collect data from second, third-and fourth-year civil engineering students over a two-year period. Prior studies have focused on the instrument’s latent constructs with sense of belonging. However, no analysis has been conducted to examine how some of the constructs influence each other. Specific latent constructs of goal orientation, agency more » (students’ beliefs that their career in science or engineering can lead to positive effects on the world), FTP, and personality were selected for secondary data analysis based on theory presented in the literature about relationships between motivation, goal setting, agency, and student perceptions of their future. The sample size of respondents was 843; data cleaning and deletion of missing data (65cases; 7.7%) resulted in a final sample size of 778(92.3% of the original data). This included328 second year, 294 third year and 156 fourth year students. Statistical analyses and modeling included bivariate correlational analysis, MANOVA and MANCOVA. Results indicated significant correlation between goal orientation, agency, and time-oriented motivation. Furthermore, differences in these constructs between academic years and personality type influenced the relationship. FTP differed between sophomores and seniors, with seniors having higher scores, suggesting motivation increases as time in the program increases. Personality significantly influenced these relationships in different ways but had the strongest effect on agency. The findings that certain types of people are not only motivated to go into civil engineering but believe their major will make a difference in the world, have implications for educational practice. Results align with current literature but also shed light onto the effects of personality on time-oriented motivation and agency, expanding theory in engineering education. Further research is needed to determine if the effects of personality hold true for other engineering and science majors. « less
Authors:
; ; ;
Award ID(s):
1730576
Publication Date:
NSF-PAR ID:
10336917
Journal Name:
2021 ASEE Annual Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. When examining factors affecting student academic success, it is important to consider how these factors interact with one another. Students’ affective attributes are complex in nature; thus, research methods and analyses should holistically examine how these attributes interact, not simply as a set of distinct constructs. Prior research into engineering students’ affective attributes, in which we used a validated survey to assess student motivation, identity, goal orientation, sense of belonging, career outcome expectations, grit and personality traits, demonstrated a positive correlation between perceptions of belongingness in engineering and time spent in the program. Other prior research has examined interactions between affective attributes, for example, engineering identity as a predictor of grit (consistency of interest). However, more work is needed to examine the complex relationships between sense of belonging, engineering identity, future career outcome expectations and motivation, particularly for students in an engineering program undergoing curricular change. This paper describes a confirmatory factor analysis and structural equation model to examine how engineering identity, career outcome expectations and time-oriented motivation (specifically, students’ future time perspectives, or FTP) impact their sense of belonging in engineering, with grit (consistency of interest) as a moderator of these relationships. To conduct these analyses, we used surveymore »data collected over two years from sophomores, juniors, and seniors enrolled in an undergraduate civil engineering program (2017-18, n=358; 2018-19, n=556). Based on descriptive statistics and initial statistical comparisons, we confirmed our prior findings that students’ sense of belonging at the course level increased with time in the program (from sophomore to senior year), and that engineering identity increased with time in the program as well. In addition, we observed that seniors had higher perceived instrumentality, a sub-construct of FTP indicating their perceived usefulness of their courses in reaching their future goals, than sophomores and juniors. We found that course belongingness and FTP have the strongest influence on belongingness compared to other affective attributes we assessed. When identity and motivation were factored in, career outcome expectations were not influential to engineering belongingness. Finally, we found that time-oriented motivation (FTP) was also a mediator of this relationship through its influence on grit (consistency of interest).« less
  2. POSTER. Presented at the Symposium (9/12/2019) Abstract: The Academy of Engineering Success (AcES) employs literature-based, best practices to support and retain underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. AcES was established in 2012 and has been supported via NSF S-STEM award number 1644119 since 2016. The 2016, 2017, and 2018 cohorts consist of 12, 20, and 22 students, respectively. Five S-STEM supported scholarships were awarded to the 2016 cohort, seven scholarships were awarded to students from the 2017 cohort, and six scholarships were awarded to students from the 2018 cohort. AcES students participate in a one-week summer bridge experience, a common fall semester course focused on professional development, and a common spring semester course emphasizing the role of engineers in societal development. Starting with the summer bridge experience, and continuing until graduation, students are immersed in curricular and co-curricular activities with the goals of fostering feelings of institutional inclusion and belonging in engineering, providing academic support and student success skills, and professional development. The aforementioned goals are achieved by providing (1) opportunities for faculty-student, student-student, and industry mentor-student interaction, (2) academic support, and student success education in areas such as time managementmore »and study skills, and (3) facilitated career and major exploration. Four research questions are being examined, (1) What is the relationship between participation in the AcES program and participants’ academic success?, (2) What aspects of the AcES program most significantly impact participants’ success in engineering, (3) How do AcES students seek to overcome challenges in studying engineering, and (4) What is the longitudinal impact of the AcES program in terms of motivation, perceptions, feelings of inclusion, outcome expectations of the participants and retention? Students enrolled in the AcES program participate in the GRIT, LAESE, and MSLQ surveys, focus groups, and one-on-one interviews at the start and end of each fall semester and at the end of the spring semester. The surveys provide a measure of students’ GRIT, general self-efficacy, engineering self-efficacy, test anxiety, math outcome efficacy, intrinsic value of learning, inclusion, career expectations, and coping efficacy. Focus group and interview responses are analyzed in order to answer research questions 2, 3, and 4. Survey responses are analyzed to answer research question 4, and institutional data such as GPA is used to answer research question 1. An analysis of the 2017 AcES cohort survey responses produced a surprising result. When the responses of AcES students who retained were compared to the responses of AcES students who left engineering, those who left engineering had higher baseline values of GRIT, career expectations, engineering self-efficacy, and math outcome efficacy than those students who retained. A preliminary analysis of the 2016, 2017, and 2018 focus group and one-on-one interview responses indicates that the Engineering Learning Center, tutors, organized out of class experiences, first-year seminar, the AcES cohort, the AcES summer bridge, the AcES program, AcES Faculty/Staff, AcES guest lecturers, and FEP faculty/Staff are viewed as valuable by students and cited with contributing to their success in engineering. It is also evident that AcES students seek help from peers, seek help from tutors, use online resources, and attend office hours to overcome their challenges in studying engineering.« less
  3. National reports have indicated colleges and universities need to increase the number of students graduating with engineering degrees to meet anticipated job openings in the near-term future. Fields like engineering are critical to the nation’s economic strength and competitiveness globally, and engineering expertise is needed to solve society’s most pressing problems. Yet only about 40% of students who aspire to an engineering degree follow the path to complete one, and an even smaller percentage of those students continue into an engineering career. Underlying students’ motivation to transform their engineering interest into an engineering career is the psychological construct of engineering identity. Engineering identity reflects the extent to which a person identifies with being an engineer. Previous research has focused on experiences or interventions that promote engineering identity, and some qualitative work has suggested students who are retained in engineering experience differences in engineering identity, but little research has tested the relationship between retention and engineering identity, especially modeling change in engineering identity over four years of college. The data for this study were taken from the 2013 College Senior Survey (CSS), administered to students at the end of their fourth year of college by the Cooperative Institutional Research Program (CIRP)more »at the Higher Education Research Institute at UCLA. Students’ responses to CSS items were then matched to their responses to the Freshman Survey (TFS), also administered by CIRP, at the very beginning of their first year of college. For this study, all students who indicated their intended major as engineering at the start of college constituted the sample, which included 1205 students at 72 universities. The dependent variable is a dichotomous variable indicating if students marked engineering as their major at the end of the fourth year of college. The main independent variable of interest in this study is engineering identity. Engineering identity was computed using exploratory factor analysis with three items from the CSS indicating the importance to students of becoming an authority in their chosen field, being recognized for contributions to their field, and making theoretical contributions to science. Hierarchical generalized linear modeling with robust standard errors was used to model engineering retention as the dependent variable was dichotomous in nature and the data were “nested” in structure (students nested within universities). Control variables include a pretest of engineering identity from the TFS, college experiences known to predict retention and other outcomes in engineering, demographic variables, precollege academic preparation, choice of engineering major, academic and social self-concept at college entry, and institutional characteristics. In the final model, engineering identity was a significant predictor of engineering retention, controlling for all other factors including the engineering identity pretest.« less
  4. This research paper examines faculty perceptions of and approaches towards fostering students’ motivation to learn engineering at Hispanic-Serving Institutions (HSIs). By aligning learning experiences with what motivates Hispanic or Latinx students, the resulting higher student motivation could increase the sense of belonging for underrepresented populations in engineering, ultimately improving student retention and persistence through meaningful instructional practices. Motivation to learn encompasses individuals' perspectives about themselves, the course material, the broader educational curriculum, and their role in their own learning [1]. Students’ motivation can be supported or hindered by their interactions with others, peers, and educators. As such, an educator’s teaching style is a critical part of this process [2]. Therefore, because of the link between a faculty member’s ability to foster student motivation and improved learning outcomes, this paper seeks to explore how engineering faculty approach student motivation in their course designs at Hispanic-Serving Institutions. Humans are curious beings naturally drawn to exploration and learning. Self Determination Theory (SDT), popularized by Ryan and Deci, describes the interconnection of extrinsic (external) and intrinsic (internal) motivators, acknowledging the link between student’s physiological needs and their learning motivations [1], [3]. SDT proposes that students must experience the satisfaction of competence, autonomy, and relatednessmore »for a high level of intrinsic motivation. Further, research indicates that appropriately structured, highly autonomy-supportive teaching styles that foster intrinsic motivation are associated with improved student outcomes [2]. However, further research is needed to observe how faculty prioritize students’ innate needs and how they seek to foster student motivation in tangible ways within their engineering classrooms. Therefore, this paper seeks to answer the following research question: What educational supports do engineering faculty at HSIs propose to embed in their curricula to increase their students’ intrinsic motivation? To answer this question, thirty-six engineering educators from thirteen two- and four-year HSIs from across the continental United States were introduced to the SDT and approaches for supporting students’ intrinsic motivation during a multi-institutional faculty development workshop series. Participants were asked to reflect on and prototype learning experiences that would promote intrinsic motivation and fulfill students’ needs for competence, relatedness, and autonomy to learn engineering [1]. Data were collected through a series of reflection worksheets where participants were asked to describe their target stakeholders, define a course redesign goal, and generate possible solutions while considering the impact of the redesign on student motivation. Qualitative analysis was used to explore participant responses. Analysis indicates that the participants were more likely to simultaneously address multiple motivational constructs when attempting to improve student motivation, rather than addressing them individually. Some of these approaches included the adoption of autonomy-supportive and structured teaching styles. As a result of this research, there is potential to influence future faculty development opportunities at HSIs and further explore intentional learning experiences that promote and foster intrinsic motivation in the engineering classroom.« less
  5. In order to lead the social process required to solve society’s grandest challenges and ensure that the capabilities of an expanded engineering workforce are successfully harnessed, new engineers must be more than just technical experts, they must also be technical leaders. Thankfully, greater numbers of engineering educators are recognizing this need and are consequently establishing engineering leadership certificates, minors, and even full degree programs through centers at universities throughout the country. However, for these programs to reach their full potential, engineering educators must be successful in integrating leadership into the very identity of engineers. This study seeks to better understand the relationship between engineering identity and leadership, so tools can be developed that enable engineering educators to more effectively integrate leadership into an engineering identity. This paper explores this relationship using a national sample of 918 engineering students who participated in the 2013 College Senior Survey (CSS). The CSS is administered by the Higher Education Research Institute (HERI) at UCLA to college students at the end of their fourth year of college; data from the CSS are then matched to students’ prior responses on the 2009 Freshman Survey (TFS), which was administered when they first started college, to create amore »longitudinal sample. Using a leadership construct developed by HERI as the outcome variable, this work utilizes Hierarchical Linear Modelling (HLM) to examine the impact of engineering identity and a host of other factors shown to be important in college student development on leadership. HLM is especially appropriate since individual student cases are grouped by schools, and predictor variables include both student-level and institution-level variables. The leadership construct, referred to as leadership self-efficacy in this work, includes self-rated growth in leadership ability, self-rating of leadership ability relative to one’s peers, participation in a leadership role and/or leadership training, and perceived effectiveness leading an organization. The primary independent variable of interest was a factor measuring engineering identity comprised of items available on both the TFS and CSS instruments. Including this measure of engineering identity from two different time periods in the model provides the relationship between engineering identity in the fourth year and leadership self-efficacy, controlling for engineering identity in the first year as a pretest. Statistically significant results were found across each of the areas tested, including the fourth-year engineering identity factor as well as several collegiate experiences, pre-college experiences, major, and institutional variables. Taken together, these results present a nuanced picture of what matters to predicting leadership outcomes for undergraduate engineering students. For example, while engineering identity is a significant positive predictor of the leadership construct, computer engineers score lower than mechanical engineers on leadership, while interacting with faculty appears to enhance leadership self-efficacy.« less