skip to main content


Title: A Socratic Tutor for Source Code Comprehension
Reported here are the findings of a comparative study on the effects of using a Socratic Intelligent Tutoring System for source code comprehension and learning computer programming. The result shows there are significant differences between the two groups where students who used Socratic Tutor ITS improved their knowledge by 45% in term of learning gain, developed a better understanding of concepts such as nested if-else and for loop, and improved their confidence level by 13%. Furthermore, the result of the Pearson product-moment correlation coefficient shows a positive correlation (r = 0.68) between feedback from the ITS and learning gain.  more » « less
Award ID(s):
1822752
NSF-PAR ID:
10189529
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 21stInternational Conference on Artificial Intelligence in Education
Volume:
II
Page Range / eLocation ID:
15-19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present in this paper the results of a randomized control trial experiment that compared the effectiveness of two instructional strategies that scaffold learners' code comprehension processes: eliciting Free Self-Explanation and a Socratic Method. Code comprehension, i.e., understanding source code, is a critical skill for both learners and professionals. Improving learners' code comprehension skills should result in improved learning which in turn should help with retention in intro-to-programming courses which are notorious for suffering from very high attrition rates due to the complexity of programming topics. To this end, the reported experiment is meant to explore the effectiveness of various strategies to elicit self-explanation as a way to improve comprehension and learning during complex code comprehension and learning activities in intro-to-programming courses. The experiment showed pre-/post-test learning gains of 30% (M = 0.30, SD = 0.47) for the Free Self-Explanation condition and learning gains of 59% (M = 0.59,SD = 0.39) for the Socratic method. Furthermore, we investigated the behavior of the two strategies as a function of students' prior knowledge which was measured using learners' pretest score. For the Free Self-Explanation condition, there was no significant difference in mean learning gains for low vs. high knowledge students. The magnitude of the difference in performance (mean difference= 0.02,95% CI: -0.34 to 0.39) was very small (eta squared = 0.006). Likewise, the Socratic method showed no significant difference in mean learning gains between low vs. high performing students. The magnitude of the performance difference (mean difference =-0.24,95% CI: -0.534 to 0.03) was large (eta squared = 0.10). These findings suggest that eliciting self-explanations can be used as an effective strategy and that guided self-explanations as in the Socratic method condition is more effective at inducing learning gains. 
    more » « less
  2. We describe and experimentally validate a question-asking framework for machine-learned linguistic knowledge about human emotions. Using the Socratic method as a theoretical inspiration, we develop an experimental method and computational model for computers to learn subjective information about emotions by playing emotion twenty questions (EMO20Q), a game of twenty questions limited to words denoting emotions. Using human–human EMO20Q data we bootstrap a sequential Bayesian model that drives a generalized pushdown automaton-based dialog agent that further learns from 300 human–computer dialogs collected on Amazon Mechanical Turk. The human–human EMO20Q dialogs show the capability of humans to use a large, rich, subjective vocabulary of emotion words. Training on successive batches of human–computer EMO20Q dialogs shows that the automated agent is able to learn from subsequent human–computer interactions. Our results show that the training procedure enables the agent to learn a large set of emotion words. The fully trained agent successfully completes EMO20Q at 67% of human performance and 30% better than the bootstrapped agent. Even when the agent fails to guess the human opponent’s emotion word in the EMO20Q game, the agent’s behavior of searching for knowledge makes it appear human-like, which enables the agent to maintain user engagement and learn new, out-of-vocabulary words. These results lead us to conclude that the question-asking methodology and its implementation as a sequential Bayes pushdown automaton are a successful model for the cognitive abilities involved in learning, retrieving, and using emotion words by an automated agent in a dialog setting.

     
    more » « less
  3. Summary

    Variable selection plays an important role in high dimensional statistical modelling which nowadays appears in many areas and is key to various scientific discoveries. For problems of large scale or dimensionality p, accuracy of estimation and computational cost are two top concerns. Recently, Candes and Tao have proposed the Dantzig selector using L1-regularization and showed that it achieves the ideal risk up to a logarithmic factor log(p). Their innovative procedure and remarkable result are challenged when the dimensionality is ultrahigh as the factor log(p) can be large and their uniform uncertainty principle can fail. Motivated by these concerns, we introduce the concept of sure screening and propose a sure screening method that is based on correlation learning, called sure independence screening, to reduce dimensionality from high to a moderate scale that is below the sample size. In a fairly general asymptotic framework, correlation learning is shown to have the sure screening property for even exponentially growing dimensionality. As a methodological extension, iterative sure independence screening is also proposed to enhance its finite sample performance. With dimension reduced accurately from high to below sample size, variable selection can be improved on both speed and accuracy, and can then be accomplished by a well-developed method such as smoothly clipped absolute deviation, the Dantzig selector, lasso or adaptive lasso. The connections between these penalized least squares methods are also elucidated.

     
    more » « less
  4. Imagine you have lost your cell phone. Your eyes scan the cluttered table in front of you, searching for its familiar blue case. But what is happening within the visual areas of your brain while you search? One possibility is that neurons that represent relevant features such as 'blue' and 'rectangular' increase their activity. This might help you spot your phone among all the other objects on the table. Paying attention to specific features improves our performance on visual tasks that require detecting those features. The 'feature similarity gain model' proposes that this is because attention increases the activity of neurons sensitive to specific target features, such as ‘blue’ in the example above. But is this how the brain solves such challenges in practice? Previous studies examining this issue have relied on correlations. They have shown that increases in neural activity correlate with improved performance on visual tasks. But correlation does not imply causation. Lindsay and Miller have now used a computer model of the brain’s visual pathway to examine whether changes in neural activity cause improved performance. The model was trained to use feature similarity gain to detect an object within a set of photographs. As predicted, changes in activity like those that occur in the brain did indeed improve the model’s performance. Moreover, activity changes at later stages of the model's processing pathway produced bigger improvements than activity changes earlier in the pathway. This may explain why attention affects neural activity more at later stages in the visual pathway. But feature similarity gain is not the only possible explanation for the results. Lindsay and Miller show that another pattern of activity change also enhanced the model’s performance, and propose an experiment to distinguish between the two possibilities. Overall, these findings increase our understanding of how the brain processes sensory information. Work is ongoing to teach computers to process images as efficiently as the human visual system. The computer model used in this study is similar to those used in state-of-the-art computer vision. These findings could thus help advance artificial sensory processing too. 
    more » « less
  5. In intelligent tutoring systems (ITS) abundant supportive messages are provided to learners. One implicit assumption behind this design is that learners would actively process and benefit from feedback messages when interacting with ITS individually. However, this is not true for all learners; some gain little after numerous practice opportunities. In the current research, we assume that if the learner invests enough cognitive effort to review feedback messages provided by the system, the learner’s performance should be improved as practice opportunities accumulate. We expect that the learner’s cognitive effort investment could be reflected to some extent by the response latency, then the learner’s improvement should also be correlated with the response latency. Therefore, based on this core hypothesis, we conduct a cluster analysis by exploring features relevant to learners’ response latency. We expect to find several features that could be used as indicators of the feedback usage of learners; consequently, these features may be used to predict learners’ learning gain in future research. Our results suggest that learners’ prior knowledge level plays a role when interacting with ITS and different patterns of response latency. Learners with higher prior knowledge levels tend to interact flexibly with the system and use feedback messages more effectively. The quality of their previous attempts influences their response latency. However, learners with lower prior knowledge perform two opposite patterns, some tend to respond more quickly, and some tend to respond more slowly. One common characteristic of these learners is their incorrect response latency is not influenced by the quality of their previous performance. One interesting result is that those quick responders forget faster. Thus, we concluded that for learners with lower prior knowledge, it is better for them not to react hastily to obtain a more durable memory. 
    more » « less