Abstract. The Asian monsoon anticyclone (AMA) represents one of thewettest regions in the lower stratosphere (LS) and is a key contributor tothe global annual maximum in LS water vapour. While the AMA wet pool islinked with persistent convection in the region and horizontal confinementof the anticyclone, there remain ambiguities regarding the role oftropopause-overshooting convection in maintaining the regional LS watervapour maximum. This study tackles this issue using a unique set ofobservations from aboard the high-altitude M55-Geophysica aircraft deployedin Nepal in summer 2017 within the EU StratoClim project. We use acombination of airborne measurements (water vapour, ice water, waterisotopes, cloud backscatter) together with ensemble trajectory modellingcoupled with satellite observations to characterize the processescontrolling water vapour and clouds in the confined lower stratosphere (CLS)of the AMA. Our analysis puts in evidence the dual role of overshootingconvection, which may lead to hydration or dehydration depending on thesynoptic-scale tropopause temperatures in the AMA. We show that all of theobserved CLS water vapour enhancements are traceable to convective eventswithin the AMA and furthermore bear an isotopic signature of the overshootingprocess. A surprising result is that the plumes of moist air with mixingratios nearly twice the background level can persist for weeks whilstrecirculating within the anticyclone, without being subject to irreversibledehydration through ice settling. Our findings highlight the importance ofconvection and recirculation within the AMA for the transport of water into thestratosphere.
more »
« less
The effect of phase change on stability of convective flow in a layer of volatile liquid driven by a horizontal temperature gradient
Buoyancy–thermocapillary convection in a layer of volatile liquid driven by a horizontal temperature gradient arises in a variety of situations. Recent studies have shown that the composition of the gas phase, which is typically a mixture of vapour and air, has a noticeable effect on the critical Marangoni number describing the onset of convection as well as on the observed convection pattern. Specifically, as the total pressure or, equivalently, the average concentration of air is decreased, the threshold of the instability leading to the emergence of convective rolls is found to increase rather significantly. We present a linear stability analysis of the problem which shows that this trend can be readily understood by considering the transport of heat and vapour through the gas phase. In particular, we show that transport in the gas phase has a noticeable effect even at atmospheric conditions, when phase change is greatly suppressed.
more »
« less
- Award ID(s):
- 1511470
- PAR ID:
- 10189605
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 838
- ISSN:
- 0022-1120
- Page Range / eLocation ID:
- 248 to 283
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Data centers are witnessing an unprecedented increase in processing and data storage, resulting in an exponential increase in the servers’ power density and heat generation. Data center operators are looking for green energy efficient cooling technologies with low power consumption and high thermal performance. Typical air-cooled data centers must maintain safe operating temperatures to accommodate cooling for high power consuming server components such as CPUs and GPUs. Thus, making air-cooling inefficient with regards to heat transfer and energy consumption for applications such as high-performance computing, AI, cryptocurrency, and cloud computing, thereby forcing the data centers to switch to liquid cooling. Additionally, air-cooling has a higher OPEX to account for higher server fan power. Liquid Immersion Cooling (LIC) is an affordable and sustainable cooling technology that addresses many of the challenges that come with air cooling technology. LIC is becoming a viable and reliable cooling technology for many high-power demanding applications, leading to reduced maintenance costs, lower water utilization, and lower power consumption. In terms of environmental effect, single-phase immersion cooling outperforms two-phase immersion cooling. There are two types of single-phase immersion cooling methods namely, forced and natural convection. Here, forced convection has a higher overall heat transfer coefficient which makes it advantageous for cooling high-powered electronic devices. Obviously, with natural convection, it is possible to simplify cooling components including elimination of pump. There is, however, some advantages to forced convection and especially low velocity flow where the pumping power is relatively negligible. This study provides a comparison between a baseline forced convection single phase immersion cooled server run for three different inlet temperatures and four different natural convection configurations that utilize different server powers and cold plates. Since the buoyancy effect of the hot fluid is leveraged to generate a natural flow in natural convection, cold plates are designed to remove heat from the server. For performance comparison, a natural convection model with cold plates is designed where water is the flowing fluid in the cold plate. A high-density server is modeled on the Ansys Icepak, with a total server heat load of 3.76 kW. The server is made up of two CPUs and eight GPUs with each chip having its own thermal design power (TDPs). For both heat transfer conditions, the fluid used in the investigation is EC-110, and it is operated at input temperatures of 30°C, 40°C, and 50°C. The coolant flow rate in forced convection is 5 GPM, whereas the flow rate in natural convection cold plates is varied. CFD simulations are used to reduce chip case temperatures through the utilization of both forced and natural convection. Pressure drop and pumping power of operation are also evaluated on the server for the given intake temperature range, and the best-operating parameters are established. The numerical study shows that forced convection systems can maintain much lower component temperatures in comparison to natural convection systems even when the natural convection systems are modeled with enhanced cooling characteristics.more » « less
-
Abstract The Eulerian multifluid mathematical model is developed to describe the marine atmospheric boundary layer laden with sea spray under the high-wind condition of a hurricane. The model considers spray and air as separate continuous interacting turbulent media and employs the multifluid E –ϵ closure. Each phase is described by its own set of coupled conservation equations and characterized by its own velocity. Such an approach enables us to accurately quantify the interaction between spray and air and pinpoint the effect of spray on the vertical momentum transport much more precisely than could be done with traditional mixture-type approaches. The model consistently quantifies the effect of spray inertia and the suppression of air turbulence due to two different mechanisms: the turbulence attenuation, which results from the inability of spray droplets to fully follow turbulent fluctuations, and the vertical transport of spray against the gravity by turbulent eddies. The results of numerical and asymptotic analyses show that the turbulence suppression by spray overpowers its inertia several meters above wave crests, resulting in a noticeable wind acceleration and the corresponding reduction of the drag coefficient from the reference values for a spray-free atmosphere. This occurs at much lower than predicted previously spray volume fraction values of ∼10 −5 . The falloff of the drag coefficient from its reference values is more strongly pronounced at higher altitudes. The drag coefficient reaches its maximum at spray volume fraction values of ∼10 −4 , which is several times smaller than predicted by mixture-type models.more » « less
-
Abstract. Aircraft-based measurements enable large-scale characterization of gas-phase atmospheric composition, but these measurements are complicated by the challenges of sampling from high-speed flow. Under such sampling conditions, the sample flow will likely experience turbulence, accelerating and mixing of potential contamination of the gas-phase from the condensed-phase components on walls, and reduced vapor transmission due to losses to the inner walls of the sampling line. While a significant amount of research has gone into understanding aerosol sampling efficiency for aircraft inlets, a similar research investment has not been made for gas sampling. Here, we analyze the performance of a forward-facing laminar flow gas inlet to establish its performance as a function of operating conditions, including ambient pressure, freestream velocities, and sampling conditions. Using computational fluid dynamics (CFD) modeling we simulate flow inside and outside the inlet to determine the extent of freestream turbulent interaction with the sample flow and its implication for gas sample transport. The CFD results of flow features in the inlet are compared against measurements of air speed and turbulent intensity from full-sized high-speed wind tunnel experiments. These comparisons suggest that the Reynolds-averaged Navier–Stokes (RANS) CFD simulations using the shear stress transport (SST) modeling approach provide the most reasonable prediction of the turbulence characteristics of the inlet.more » « less
-
Abstract. Aircraft-based measurements enable large-scale characterization of gas-phase atmospheric composition, but these measurements are complicated by the challenges of sampling from high-speed flow. Under such sampling conditions, the sample flow will likely experience turbulence, accelerating | mixing of potential contamination of the gas-phase from the condensed-phase components on walls and reduced vapor transmission due to losses to the inner walls of the sampling line. While a significant amount of research has gone into understanding aerosol sampling efficiency for aircraft inlets, a similar research investment has not been made for gas sampling. Here, we analyze the performance of a forward-facing laminar flow gas inlet to establish its performance as a function of operating conditions, including ambient pressure, freestream velocities, and sampling conditions. Using computational fluid dynamics (CFD) modeling we simulate flow inside and outside the inlet to determine the extent of freestream turbulent interaction with the sample flow and its implication for gas sample transport. The CFD results of flow features in the inlet are compared against measurements of air speed and turbulent intensity from full-sized high-speed wind-tunnel experiments. These comparisons suggest that the Reynolds Averaged Navier-Stokes (RANS) CFD simulations using the Shear Stress Transport (SST) modeling approach provide the most reasonable prediction of the turbulence characteristics of the inlet.more » « less
An official website of the United States government

